INTEL® OPTANE™ SSD DC P4800X WITH INTEL® MEMORY DRIVE TECHNOLOGY

OVERVIEW

March 2019
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

This document contains information on products in the design phase of development.

Results have been estimated or simulated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

Intel, Xeon, Intel Optane, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation. All rights reserved.
In-memory computing is driving the memory scale-up market.

- Large memory pool
- Analytics/statistics
- Cloud/hyperscale
- In memory database
- Streaming database
- Complex graphs
- Science/engineering

CAGR projected 2017-2022:

30.27%¹

¹Source: Mordor Intelligence; *Global In-Memory Computing Market*, July 2017

*Other names and brands may be claimed as the property of others.
TRADITIONAL OPTIONS FOR IN-MEMORY COMPUTING HAVE DRAWBACKS

“For server DRAM, supply remained tight in Q1 resulting in higher average selling prices (ASPs)” epsnews.com, May 2018

1. **LARGER CAPACITY DRAM**
 - High-capacity DIMMs are expensive

2. **MORE DIMMS PER SERVER**
 - Limited scaling capacity with DIMMs

3. **ADD MORE SYSTEMS**
 - Inefficient to add nodes for memory

Other names and brands may be claimed as the property of others
INTRODUCING INTEL® MEMORY DRIVE TECHNOLOGY

SW FOR INTEL® OPTANE™ SSD DC P4800X

- Use Intel® Optane™ SSD DC P4800X transparently as memory
- Grow beyond system DRAM capacity, or replace high-capacity DIMMs for lower-cost alternative, with similar performance
- Leverage storage-class memory today!
 - No change to software: unmodified Linux* OS, applications, and programming
 - No change to hardware: runs bare-metal, loaded before OS from BIOS or UEFI, compatible with Intel® Xeon® processor family (1-8 socket)
- Flexible procurement options:
 1. Software-only (you provide Intel® Optane™ SSD DC P4800X)
 2. Fully-integrated (Intel® Optane™ SSD with preloaded Intel® Memory Drive Technology)

*Other names and brands may be claimed as the property of others
INTEL® OPTANE™ SSDs WITH INTEL® MEMORY DRIVE TECHNOLOGY DELIVERS BIG, AFFORDABLE MEMORY

EXPAND BEYOND LIMITED DRAM CAPACITY

- Expand Insights with Massive Data Pools
- Intel® Memory Drive Technology supports Linux® x86_64 (64-bit), kernels 2.6.32 or newer.
 *Other names and brands may be claimed as the property of others

DISPLACE DRAM WITH AFFORDABLE SSDs

- Reduce High-capacity DRAM CAPEX Expenditures

Intel® Memory Drive Technology supports Linux® x86_64 (64-bit), kernels 2.6.32 or newer.
*Other names and brands may be claimed as the property of others
INTEL® OPTANE™ SSDs WITH INTEL® MEMORY DRIVE TECHNOLOGY CAN EXPAND SYSTEM MEMORY CAPACITY

DRAM-ONLY 2-SOCKET MEMORY CAPACITY

Intel® Memory Drive Technology 2-Socket Server Memory Capacity

DRAM-only memory capacity = up to 3TB

Intel® Memory Drive Technology capacity = up to 24TB

1. For example: 128GB DRAM can be expanded up to 1024GB based on the capacity of the non-volatile memory media installed. Higher expansion ratios may be supported, with possibly suboptimal performance.
DISPLACE COSTLY DRAM WITH INTEL® OPTANE™ SSDs AND INTEL® MEMORY DRIVE TECHNOLOGY

COST FOR 3TB OF DRAM-ONLY MEMORY

$45,598

Memory Configuration used:

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>$/ea</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>128GB DDR4-2400 RDIMM</td>
<td>24</td>
<td>$1899</td>
<td>$45,598</td>
</tr>
</tbody>
</table>

COST FOR 3TB OF INTEL® MEMORY DRIVE TECHNOLOGY

$14,240

Memory Configuration used:

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>$/ea</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>32GB DDR4-2400 RDIMM</td>
<td>8</td>
<td>$273</td>
<td>$2184</td>
</tr>
<tr>
<td>16GB DDR4-2400 RDIMM</td>
<td>8</td>
<td>$147</td>
<td>$1176</td>
</tr>
<tr>
<td>Intel® Memory Drive Technology 640GB</td>
<td>4</td>
<td>$2720</td>
<td>$10880</td>
</tr>
</tbody>
</table>

1 Source – Servers4Less* - Price as of October 26, 2018, Samsung M386AAK40B40-CUC4*
2 128GB PC4-19200 DDR4-2400MHz ECC Registered CL17 288-Pin Load Reduced DIMM
3 Source – Trendforce* - Server DRAM Price as of October 26, 2018 (Market Price)
4 Source – Colfax Direct* - Price as of October 26, 2018. Combined pricing for Intel® Optane™ SSD DC P4800X 750GB and Intel® Memory Drive Technology

*Other names and brands may be claimed as the property of others
INTELLIGENTLY MANAGE IN-MEMORY DATA TO OPTIMIZE PERFORMANCE

Intel® Memory Drive Technology uses machine-learning to prefetch data to DRAM
Best Fit Workloads for Intel® Optane™ SSD DC P4800X

With Intel® Memory Drive Technology

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Workloads</th>
<th>Not a Good Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefetch</td>
<td>Predictable large memory access patterns</td>
<td>Low-concurrency Workloads</td>
</tr>
<tr>
<td></td>
<td>Enterprise, DBMS, OLTP, OLAP</td>
<td>Serial workloads, single process/threaded</td>
</tr>
<tr>
<td>Asynchronous Memory Load</td>
<td>High-concurrency access patterns; many processes; highly multithreaded</td>
<td>Memory Bandwidth-bound Workloads</td>
</tr>
<tr>
<td></td>
<td>Cloud, Hyperscale, Streaming database, Containers/VMS</td>
<td>NVMe* cannot meet memory controller bandwidth</td>
</tr>
<tr>
<td>HPC</td>
<td>CPU-intensive High Performance Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAE in-core solvers, In-situ workflows, Data analytics, Statistics</td>
<td></td>
</tr>
</tbody>
</table>

* Other names and brands may be claimed as the property of others.
MEMCACHED*: speed up dynamic web apps by alleviating database load

See more at: https://www.intel.com/content/www/us/en/software/memcached-optimization-technology-brief.html

IN-MEMORY DATABASES: leading enterprise in-memory databases for both OLAP and OLTP

REDIS*: in-memory database and caching engine

See more at: https://www.intel.com/content/www/us/en/software/apache-spark-optimization-technology-brief.html

APACHE SPARK*: a fast and general engine for large-scale data processing

See more at: https://www.intel.com/content/www/us/en/software/apache-spark-optimization-technology-brief.html

China Unicom*: http://www.cnii.com.cn/incloud/2017-11/14/content_2012143.htm

Selectel*: https://habrahabr.ru/company/selectel/blog/345306/

KVM*

*Other names and brands may be claimed as the property of others
KVM* + Redis* comparison: Intel® Optane™ SSDs with Intel® Memory Drive Technology vs. Linux* swap

System Configurations
Tested 108 VMs x3.3GB/VM

- **Linux swap on:** 192GB DDR4 DRAM
- **Intel® Memory Drive Technology (no swap):** 192GB DDR4 DRAM + Intel® Optane™ SSD P4800X with Intel® Memory Drive Technology

Better average latency vs. swap

- up to 5x

Better P99 max latency vs. swap

- up to 10x

Lower Memory $/VM

- up to 60%

- add 576GB of Intel® Memory Drive Technology capacity

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Performance results are based on testing as of July 30, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure.

1 System configuration: Source – Intel: Server model: 2x Intel® Xeon® Gold 6154 @ 3.0 GHz, 72 hyper threaded cores, Intel system board S2600WF, 192GB installed DDR4 @ 2400Mhz, 2x Intel® Optane™ SSD DC 375GB; CentOS 7.5.1804 (kernel 4.15.12-1.el7.elrepo.x86_64 upgraded), Redis version 4.02 (benchmark and server) in-memory instances given 5.7GB, 3.3 millions key pairs at G=10.

2 Implementation details: System BIOS: 00.01.0013 (Link); Kernel 4.15.12, Mitigation was validated for variants 1 through 3 using a checker script (Link – accessed June 20, 2018).

* Other names and brands may be claimed as the property of others

Cost advantages derived from memory cost only – DDR4 2400 Server memory @ $11.72/GB (Link) versus bundle channel price of an Intel Memory Drive (any density) of $4.22/GB as of June 25, 2018. (Link), $3.09 for SSD, $1.13 for Software license.
Redis is a well known in-memory data store. The benchmark is using high concurrency SET/GET operations of small (1kB) and large (100kB) messages, comparing 4X memory expansion with Intel® Memory Drive Technology.

Additional Info
- Benchmark shown at same system memory capacities
- redis server and client/load systems are connected over 10GbE
- Test maintains one consistent rate of load
- Get more memory per server w/o reducing transaction throughput

Workload Description

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Performance results are based on testing as of July 30, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure. Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. The benchmark results may need to be revised as additional testing is conducted.

1 Source – redis server: 2x Xeon Gold 6154 @ 3.00 Ghz; network topology: 10GigE dedicated back-to-back link; CentOS Linux* release 7.4 (Core); kernel: 3.10.0-693.5.2 (el7.x86_64)
2 Source – DRAMeXchange*: Server DIMM Price Report Feb 2018, 32GB DIMM @ $302.27 average price

Performance Chart

<table>
<thead>
<tr>
<th>Message Size</th>
<th>TPS (Thousands) SET</th>
<th>99th percentile latency: <1 ms</th>
<th>TPS (Thousands) GET</th>
<th>99th percentile latency: <300 µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>100kB</td>
<td>DRAM</td>
<td>Intel Memory Drive Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.76</td>
<td>11.77</td>
<td>11.78</td>
<td>11.76</td>
<td></td>
</tr>
<tr>
<td>1kB</td>
<td>DRAM</td>
<td>Intel Memory Drive Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.07</td>
<td>0.93</td>
<td>1.12</td>
<td>0.93</td>
<td></td>
</tr>
</tbody>
</table>

System Configuration

- 2ea Intel® Xeon® Gold 6154 Processor @ 3.00GHz
- 2ea Intel® Memory Drive Technology 64GiB
- Comparing:
 - DRAM-Only with 768GB DDR4
 - 192GB DDR4 augmented with Intel® Memory Drive Technology for a total of 768GB

Get Equivalent Performance

GET EQUIVALENT PERFORMANCE WITH REDUCED MEMORY INVESTMENT

- Deliver 82%-99% of DRAM-only performance for a dataset 4x larger than DRAM

System Cost [$]

- DRAM-only (1.5TB Memory)
- Intel® Memory Drive Technology (256GB)

Get More Memory

GET MORE MEMORY WITHOUT REDUCING TRANSACTION THROUGHPUT

- 11.76 million TPS (Thousands) SET
- 11.77 million TPS (Thousands) GET

Intel® Memory Drive Technology + 256GB

GET MORE MEMORY WITHOUT REDUCING TRANSACTION THROUGHPUT

99 percentile latency: <300 µs
“Spark adoption is booming. Its community is growing, and all major big data platforms make a point of interoperating with Spark.” ZDNet®, Nov 2017

Six Reasons to Improve Memory with Intel® Optane™ SSDs + Intel® Memory Drive Technology

Massive Memory Pool
- Up to 8x expansion versus DRAM-only
- Max capacity of 24TB on dual- or 48TB on quad-Intel® Xeon® systems

Improved Price/Performance

<table>
<thead>
<tr>
<th>Metric</th>
<th>Baseline</th>
<th>Intel® Memory Drive Technology</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time</td>
<td></td>
<td></td>
<td>up to 5x</td>
</tr>
<tr>
<td>Run time/$</td>
<td></td>
<td></td>
<td>up to 83.5%</td>
</tr>
</tbody>
</table>

- 3x Intel® Xeon® Servers
- 3x Intel® Xeon® Servers with Intel® Memory Drive Technology

Innovation Opportunities
- Research larger models and bigger data
- Improve application responsiveness by hosting all data in memory

Seamless Integration
- Solution loads pre-OS
- No hardware, OS or application changes
- Transparently integrates SSD as memory

Scale Without Adding CPU Nodes
- Add memory to existing servers, vs. deploying more
- Reduce datacenter space, power, cooling and networking costs

Reduced Data Center Cost
- CAPEX: lower cost per GB vs. RDIMM
- OPEX: potential for smaller footprint, energy savings, and reduced maintenance costs

See Appendix A for Footnotes.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of July 30, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure. *Other names and brands may be claimed as the property of others.*
EXPLORE INTEL® MEMORY DRIVE TECHNOLOGY TO:

EXPAND MEMORY CAPACITY

- Increase compute and memory per node
- Greater in-memory compute space

REDUCE COSTS VS DRAM-ONLY

- Reduced memory hardware cost
- Lower ongoing operating expenses

DO THE PREVIOUSLY IMPOSSIBLE

- Consider new usage models
- Consider new business models
Appendix A

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

1 Source – Intel, System Configuration for Management Node: S2600WFT Intel White Box, 2 sockets, Intel® Xeon® Gold 6140 CPU @ 2.30GHz, 18 cores per socket / 2 threads per core (total 72 vcores), 192GB DDR4, CentOS 7.4* distribution with 4.15.12 kernel, HortonWorks* Data Platform 2.6.4, Spark 2.2.0*. Performance results are based on testing as of July 30, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure.

2 Source – Intel, System Configuration for Data Node(s): Same as above plus 2x NVMe* PCIe* Intel® Optane™ SSD DC P4800X 375GB per system, 2x NVMe* PCIe* Intel® SSD DC P4500 3.7 TB per system