

Intel® Atom™ Processor Z3600 and Z3700 Series

Datasheet

December 2014

Revision 003

Document Number: 329474-003

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visitwww.intel.com/design/literature.htm.

Intel, Intel Atom and the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. See Trademarks on intel.com for full list of Intel trademarks. © 2014 Intel Corporation.

Contents

1	Intro	duction	. 16
	1.1	Terminology	
	1.2	Feature Overview	
		1.2.1 Type 4 SoC	
		1.2.2 Type 3 SoC	
	1.3	SKU Information	
	1.4	Difference between SoC SKUs	30
	1.5	References	
_		ical Interfaces	
2	•	Pin States Through Reset	
	2.1	System Memory Controller Interface Signals	
	2.2 2.3	USB 2.0 Host (EHCI/xHCI) Interface Signals	
	2.3 2.4	USB 2.0 HSIC Interface Signals	
	2.4	USB 3.0 (xHCI) Host Interface Signals	
	2.5	USB 2.0 Device (ULPI) Interface Signals	
	2.7	USB 3.0 Device Interface Signals	
	2.7		
	2.8	Integrated Clock Interface Signals	. 39 20
	2.9	MIPI DSI Interface Signals	
	2.10	MIPI DSI Interface Signals	
	2.11	Low Power Engine (LPE) for Audio (I ² S) Interface Signals	
	2.12	Storage Control Cluster (eMMC, SDIO, SD) Interface Signals	
	2.13	SIO - High Speed UART Interface Signals	
	2.14	SIO - I ² C Interface Signals	
	2.13	SIO - Serial Peripheral Interface (SPI) Signals	
	2.10	PCU - iLB - Real Time Clock (RTC) Interface Signals	
	2.17	PCU - iLB - Low Pin Count (LPC) Bridge Interface Signals	
	2.10	PCU - Serial Peripheral Interface (SPI) Signals	
	2.19	PCU - Power Management Controller (PMC) Interface Signals	16
	2.20	JTAG and Debug Interface Signals	
	2.21	Miscellaneous Signals	
	2.22	GPIO Signals	
	2.23	Power And Ground Pins	
	2.25	Hardware Straps	
	2.26	Configurable IO: GPIO Muxing.	
_		-	
3		essor Core	_
	3.1	Features	. 78
		3.1.1 Intel [®] Virtualization Technology (Intel [®] VT)	
		3.1.2 Security and Cryptography Technologies	
		3.1.3 Power Aware Interrupt Routing	
		3.1.4 Intel [®] Burst Technology	
	3.2	Platform Identification and CPUID	
	3.3	References	83
4	Svste	em Memory Controller	84
	4.1	Signal Descriptions	
	4.2	Features	
		4.2.1 System Memory Technology Supported	
5	C	hics. Video and Display	
3	uran	nics, viueo and Displav	. 90

	5.1		es	
	5.2	SoC G	raphics Display	
		5.2.1	Primary Planes A and B	
		5.2.2	Video Sprite Planes A, B, C and D	91
		5.2.3	Cursors A and B	
	5.3		y Pipes	
	5.4	Display	y Physical Interfaces	92
		5.4.1	Digital Display Interfaces	92
	5.5		nces	
	5.6	3D Gra	aphics and Video	99
	5.7	Featur	es	
		5.7.1	3D Engine Execution Units	101
		5.7.2	3D Pipeline	101
		5.7.3	Video Engine	
	5.8	VED (\	/ideo Encode/Decode)	102
		5.8.1	Features	103
6	МТРТ	-Camei	ra Serial Interface (CSI) and ISP	104
•	6.1		Descriptions	
	6.2		es	
	0.2	6.2.1	Imaging Capabilities	
		6.2.2	Simultaneous Acquisition	
		6.2.3	Primary Camera Still Image Resolution	
		6.2.4	Burst Mode Support	
		6.2.5	Continuous Mode Capture	
		6.2.6	Secondary Camera Still Image Resolution	
		6.2.7	Primary Camera Video Resolution	
		6.2.7	Secondary Camera Video Resolution	
		6.2.9	Bit Depth	
	6.3		ng Subsystem Integration	
	0.5	6.3.1	CPU Core	
		6.3.2	Imaging Signal Processor (ISP)	
	6.4		onal Description	
	0.4	6.4.1	•	
		6.4.1	Preview Mode	
			Image Capture	
		6.4.3	Video Capture	
		6.4.4	ISP Overview	
	6 F	6.4.5	Memory Management Unit (MMU)	
	6.5		CSI-2 Receiver	
		6.5.1	MIPI-CSI-2 Receiver Features	
7	Low	Power	Engine (LPE) for Audio (I ² S)	116
	7.1		Descriptions	
	7.2		es	
		7.2.1	Audio Capabilities	
	7.3	Detaile	ed Block Level Description	
	,	7.3.1	LPE Core	
		7.3.2	Memory Architecture	
		7.3.3	Instruction Closely Coupled Memory (CCM)	
		7.3.4	Data Closely Coupled Memory (CCM)	
		7.3.5	Mailbox Memory and Data Exchange	
	7.4		are Implementation Considerations	
	,	7.4.1	SoC Processor Core Cache Coherence	
		7.4.2	Interrupts	
		_		<u></u>

			Power Management Options for the LPE Core	
			External Timer	
	7.5			
			Clock Frequencies	
			50 MHz Clock for LPE	
			Cache and CCM Clocking	
			SSP Clocking	
			M/N Divider	
	7.6		S)	
			SSP Features	
			Operation	
			LPE and DMA FIFO Access	
	- -		Supported Formats	
	7.7		nming Model	
			PIO and DMA Programming Considerations	
			Trailing Bytes in the Receive FIFO	
8	Stora		rol Cluster (eMMC, SDIO, SD Card)	
	8.1		Descriptions	
	8.2		S	
			eMMC Interface Features	
			SDIO/SD Card Interface Features	
			Storage Interfaces	
	8.3	Referen	ces	140
9	USB	Device C	Controller Interfaces (3.0, ULPI)	142
		9.0.1	Signal Descriptions	142
	9.1	USB Dev	vice Controller	144
		9.1.1	Features	144
		9.1.2	Power Management Features	144
		9.1.3	Interrupts	145
	9.2	Referen	ces	145
10	USB	Host Cor	ntroller Interfaces (xHCI, EHCI)	146
	10.1		Descriptions	
	10.2		XHCI (Extensible Host Controller Interface)	
	10.2		Features of USB 3.0 Host	
			USB HSIC Features	
	10.3		Enhanced Host Controller Interface (EHCI)	
			EHCI USB 2.0 Controller Features	
	10.4		ces	
		10.4.1	Host Controller Specifications	150
11	Intoc	rated Cl	lock	150
11	_		S	
12			0) Overview	
	12.1	SIO - I ²	C Interface	156
			Signal Descriptions	
			Features	
			Use	
			References	
	12.2		ulse Width Modulation (PWM)	
			Signal Descriptions	
		12 2 2	Features	166

		12.2.3 Use	
	12.3	SIO - Serial Peripheral Interface (SPI)	
		12.3.1 Signal Descriptions	
		12.3.2 Features	
	12.4	SIO - High Speed UART	
		12.4.1 Signal Descriptions	
		12.4.2 Features	
		12.4.3 Use	. 174
13	Intel	$^{ ext{@}}$ Trusted Execution Engine (Intel $^{ ext{@}}$ TXE)	. 176
	13.1	Features	. 176
		13.1.1 Security Feature	. 176
14	Platf	orm Controller Unit (PCU) Overview	178
		Features	
15	PCU ·	- Power Management Controller (PMC)	
	15.1	Signal Descriptions	
	15.2	Features	
		15.2.1 Sx-G3-Sx, Handling Power Failures	
		15.2.2 Event Input Signals and Their Usage	
		15.2.3 System Power Planes	
		15.2.4 SMI#/SCI Generation	
		15.2.5 Platform Clock Support	
	1 5 2	15.2.6 INIT# (Initialization) Generation	
	15.3	References	
16	PCU ·	- Serial Peripheral Interface (SPI)	
	16.1	Signal Descriptions	
	16.2	Features	
		16.2.1 Operation Mode Features	
		16.2.2 Descriptor Mode	
		16.2.3 Flash Descriptor	
		16.2.4 Flash Access	
		16.2.5 Serial Flash Device Compatibility Requirements	
		16.2.6 Multiple Page Write Usage Model	
		16.2.7 Soft Flash Protection	
		16.2.8 SPI Flash Device Recommended Pinout	
	16.2	16.2.9 Serial Flash Device Package	
	16.3	Use	
		·	
17	PCU ·	- Universal Asynchronous Receiver/Transmitter (UART)	
	17.1	Signal Descriptions	
	17.2	Features	
		17.2.1 FIFO Operations	
	17.3	Use	
		17.3.1 Base I/O Address	
		17.3.2 Legacy Interrupt	
	17.4	UART Enable/Disable	. 211
18	PCU -	- Intel Legacy Block (iLB) Overview	. 212
	18.1	Signal Descriptions	
	-	Features	
		18.2.1 Key Features	
		18.2.2 Non-Maskable Interrupt	

6

		18.2.3 S0ix Support	
	18.3	Use	
		18.3.1 S0ix Support	214
19	PCU ·	- iLB - Low Pin Count (LPC) Bridge	216
	19.1	Signal Descriptions	
		Features	
		19.2.1 Memory Cycle Notes	
		19.2.2 Trusted Platform Module (TPM) 1.2 Support	
		19.2.3 FWH Cycle Notes	
		19.2.4 Other Notes	
		19.2.5 POST Code Redirection	
		19.2.6 Power Management	
		19.2.7 Serialized IRQ (SERIRQ)	
	19.3	Use	222
		19.3.1 LPC Clock Delay Compensation	222
		19.3.2 LPC Power Management	223
		19.3.3 SERIRQ Disable	223
	19.4	References	223
20	PCU -	- iLB - Real Time Clock (RTC)	224
	20.1	Signal Descriptions	
		Features	
	20.2	20.2.1 Update Cycles	
	20.3	Interrupts	
	20.5	20.3.1 Lockable RAM Ranges	
		20.3.2 Clearing Battery-Backed RTC CMOS RAM	
		20.3.3 Using GPI to Clear CMOS	
		20.3.4 Clearing Battery Backed RTC Registers	
		20.3.5 S0ix Support	
	20.4	References	228
21	DCII.	- iLB - 8254 Timers	230
21	21.1	Signal Descriptions	
	21.1	Features	
	21.2	21.2.1 Counter 0, System Timer	
		21.2.2 Counter 1, Refresh Request Signal	230
		21.2.3 Counter 2, Speaker Tone	
		21.2.4 S0ix Support	
	21.3	Use	
		21.3.1 Timer Programming	
		21.3.2 Reading from Interval Timer	
22	DCII	_	
22		- iLB - High Precision Event Timer (HPET)	
	22.1	Features	
		22.1.1 Non-Periodic Mode - All Timers	
		22.1.2 Periodic Mode - Timer 0 only	
	22.2	22.1.3 S0ix Support	
	22.2	References	
23	PCU ·	- iLB - GPIO	240
	23.1	Signal Descriptions	240
	23.2	Features	240
	23.3	Use	241
	23.4	GPIO Registers	242

24	PCU ·	- iLB - IO APIC	. 244
	24.1	Features	. 244
	24.2	Use	. 246
		Indirect I/O APIC Registers	
25	DCII.	- iLB - 8259 Programmable Interrupt Controllers (PIC)	2/18
25	25.1	Features	
	23.1	25.1.1 Interrupt Handling	
		25.1.2 Initialization Command Words (ICWx)	
		25.1.2 Initialization Command Words (ICWX)	
		25.1.4 Modes of Operation	
		25.1.5 End of Interrupt (EOI) Operations	
		25.1.6 Masking Interrupts	
		25.1.7 S0ix Support	
		• •	
26		- iLB - Interrupt Decoding and Routing	
	26.1	Features	
		26.1.1 Interrupt Decoder	
		26.1.2 Interrupt Router	. 256
27	Dowe	er Management	258
_,	27.1	Power Management Features	
		Power Management States Supported	
	27.2	27.2.1 S-State Definition	
		27.2.2 System States	
		27.2.3 Processor States	
		27.2.4 Integrated Graphics Display States	
		27.2.5 Integrated Memory Controller States	
		27.2.6 Interface State Combinations	
	27.3	Processor Core Power Management	
	27.5	27.3.1 Enhanced Intel SpeedStep® Technology	263
		27.3.2 Dynamic Cache Sizing	
		27.3.3 Low-Power Idle States	
		27.3.4 Processor Core C-States Description	
		27.3.5 Package C-States	
		27.3.6 Graphics Power Management	
	27 4	Memory Controller Power Management	
	27.1	27.4.1 Disabling Unused System Memory Outputs	
		27.4.2 DRAM Power Management and Initialization	
		-	
28		mal Management	
		Thermal Design Power (TDP)	
		Scenario Design Power (SDP)	
		Thermal Sensors	
	28.4	Hardware Trips	
		28.4.1 Catastrophic Trip (THERMTRIP)	
	28.5	SoC Programmable Trips	
		28.5.1 Aux3 Trip	
	20.5	28.5.2 Aux2, Aux1, Aux0 Trip	
	28.6	Platform Trips	
	26 =	28.6.1 PROCHOT#	
	28.7	Thermal Throttling Mechanisms	
	28.8	Thermal Status	. 2/5
29	Elect	rical Specifications	. 276

		Absolute Maximum and Minimum Specifications	
	29.2	Thermal Specifications 2	
	29.3		
		29.3.1 Post Board-Attach	
	29.4	Voltage and Current Specifications	78
		29.4.1 VCC and VNN Voltage Specifications	82
		29.4.2 Voltage Identification (VID)	82
	29.5	Crystal Specifications	
		DĆ Specifications	
		29.6.1 Display DC Specification	
		29.6.2 MIPI-Camera Serial Interface (CSI) DC Specification	
		29.6.3 SCC - SDIO DC Specification	
		29.6.4 SCC - SD Card DC Specification	
		29.6.5 SCC - eMMC 4.41 DC Specification	
		29.6.6 SCC - eMMC 4.51 DC Specification	
		29.6.7 JTAG (TAP) DC Specification	
		29.6.8 DDR3L-RS Memory Controller DC Specification	
		29.6.9 LPDDR3 Memory Controller DC Specification	
		29.6.10USB 2.0 Host DC Specification	
		29.6.11USB 3.0 DC Specification	
		29.6.12 PCU - iLB - LPC DC Specification	
		29.6.13 PCU - SPI (Platform Control Unit) DC Specification	
		29.6.14PCU - Power Management/Thermal (PMC) and iLB RTC DC Specification 3	
		29.6.15 SVID DC Specification	
		29.6.16 GPIO DC Specification	
		29.6.17SIO - I ² C DC Specification	
		29.6.18 SIO - UART DC Specification	09
		29.6.19I ² S (Audio) DC Specification	
30	Palle	ut and Package Information3	
30	Ballo	ut and Package Information	10
	30.1	Type 4 SoC	
		30.1.1 SoC Attributes	
		30.1.2 Ballout	
	20.2	30.1.3 Package Diagrams	
	30.2	Type 3 SoC	
		30.2.1 SoC Attributes	
		30.2.2 Ballout	
31		Pin Location 3	
		Type 4 SoC - Pin List Location	
	31.2	Type 3 SoC - Pin List Location	37
	ures		
		Type 4 SoC Block Diagram	
		Type 3 SoC Block Diagram	
		Signals Pin List (1 of 2)	
		Signals Pin List (2 of 2)	
		Sub-Display Connection	
		Block Diagram of Bridge Device to Drive LVDS Panels	
		HDMI Overview	
		DisplayPort* Overview	
Fi	gure 93	3D Graphics Block Diagram	00

Figure 10Camera Connectivity	106
Figure 11Image Processing Components	109
Figure 12MIPI-CSI Bus Block Diagram	113
Figure 13Audio Cluster Block Diagram	119
Figure 14 Memory Connections for LPE	120
Figure 15SSP CCLK Structure	125
Figure 16Programmable Serial Protocol Format	130
Figure 17Programmable Serial Protocol Format (Consecutive Transfers)	131
Figure 18SD Memory Card Bus Topology	139
Figure 19SDIO Device Bus Topology	140
Figure 20eMMC Interface	140
Figure 21xHCI and EHCI Port Mapping	148
Figure 22Clocking Example	153
Figure 23Data Transfer on the I ² C Bus	159
Figure 24START and STOP Conditions	
Figure 25Seven-Bit Address Format	160
Figure 26Ten-Bit Address Format	161
Figure 27Master Transmitter Protocol	162
Figure 28Master Receiver Protocol	162
Figure 29START Byte Transfer	
Figure 30PWM Block Diagram	
Figure 31SPI Interface Signals	168
Figure 32Clock Phase and Polarity	169
Figure 33UART Data Transfer Flow	172
Figure 34Flash Descriptor Sections	196
Figure 35Dual Output Fast Read Timing	
Figure 36LPC Interface Diagram	
Figure 37Detailed Block Diagram	
Figure 38MSI Address and Data	
Figure 39Idle Power Management Breakdown of the Processor Cores	
Figure 40Definition of Differential Voltage and Differential Voltage Peak-to-Peak	
Figure 41Definition of Pre-emphasis	
Figure 42eMMC DC Bus signal level	
Figure 43VHYS	
Figure 44 Type 4 Pin Location (Top View, Center) - Part A	
Figure 45 Type 4 Pin Location (Top View, Center) - Part B	
Figure 46Type 4 Package Mechanical Drawing	
Figure 47 Type 3 Pin Location (Top View, Center) - Part A	
Figure 48 Type 3 Pin Location (Top View, Center) - Part B	
Figure 49Type 3 Package Mechanical Drawing	31/
Tables	
Table 1SoC SKU List	29
Table 2Difference between SoC SKUs	
Table 3Platform Power Well Definitions	
Table 4Default Buffer State Definitions	
Table 5LPDDR3 System Memory Signals	
Table 6DDR3L-RS System Memory Signals	
Table 7USB 2.0 Interface Signals	
Table 8USB 2.0 Interface Signals	
Table 9USB 2.0 HSIC Interface Signals	
Table 10USB 2.0 HSIC Interface Signals	37

Table 1105B 3.0 Interface Signals	
Table 12USB 2.0 Device (ULPI) Interface Signals	
Table 13USB 3.0 Device Interface Signals	
Table 14Integrated Clock Interface Signals	
Table 15Integrated Clock Interface Signals	
Table 16Digital Display Interface Signals	
Table 17Digital Display Interface Signals	
Table 18MIPI DSI Interface Signals	41
Table 19MIPI DSI Interface Signals	41
Table 20MIPI CSI Interface Signals	41
Table 21LPE Interface Signals	42
Table 22LPE Interface Signals	42
Table 23Storage Control Cluster (eMMC, SDIO, SD) Interface Signals	42
Table 24Storage Control Cluster (eMMC, SDIO, SD) Interface Signals	43
Table 25High Speed UART Interface Signals	
Table 26High Speed UART Interface Signals	
Table 27SIO - I ² C Interface Signals	
Table 28SIO - I ² C Interface Signals	44
Table 29SIO - Serial Peripheral Interface (SPI) Signals	
Table 30SIO - Serial Peripheral Interface (SPI) Signals	44
Table 31PCU - iLB - Real Time Clock (RTC) Interface Signals	
Table 32PCU - iLB - Real Time Clock (RTC) Interface Signals	
Table 33PCU - iLB - LPC Bridge Interface Signals	
Table 34PCU - iLB - LPC Bridge Interface Signals	
Table 35PCU - Serial Peripheral Interface (SPI) Signals	
Table 36PCU - Serial Peripheral Interface (SPI) Signals	
Table 37PCU - Power Management Controller (PMC) Interface Signals	
Table 38PCU - Power Management Controller (PMC) Interface Signals	
Table 39JTAG and Debug Interface Signals	
Table 40JTAG and Debug Interface Signals	
Table 41Miscellaneous Signals and Clocks	
Table 42GPIO Signals	
Table 43Power and Ground Pins	
Table 44Straps	
Table 45Type 4 SoC - Multiplexed GPIO Functions	
Table 46Type 3 SoC - Multiplexed GPIO Functions	
Table 47Memory Channel 0 LPDDR3 Signals	85
Table 48Memory Channel 1 LPDDR3 Signals	
Table 49Memory Channel 0 DDR3L Signals	
Table 50Supported LPDDR3 Configurations	
Table 51Supported DDR3L DRAM Devices	
Table 52Supported DDR3L-RS Memory Size Per Rank	89
Table 53Display Physical Interfaces Signal Names	
Table 54Display Physical Interfaces Signal Names (2 of 2)	
Table 55Graphics clock frequency by SKUs	
Table 56Hardware Accelerated Video Decode Codec Support	
Table 57CSI Signals	
Table 58GPIO Signals	
Table 59Imaging Capabilities	
Table 60LPE Signals	
Table 61Clock Frequencies	
Table 62M/N Values, Examples	
Table 63M/N Configurable Fields	126
Table Operas Colliculable Fields	1/0

Table 64Programmable Protocol Parameters	131
Table 65eMMC Signals	
Table 66SDIO Signals	
Table 67SD Card Signals	
Table 68USB 3.0 Device Signals	
Table 69USB ULPI Device Signals	
Table 70USB 3 SS Signals	
Table 71USB 2 FS/HS Signals	
Table 72USB 2 HSIC Signals	
Table 73SoC Clock Inputs	
Table 74SoC Clock Outputs	
Table 75I2C[6:0] Signals	15/
Table 76I ² C Definition of Bits in First Byte	
Table 77PWM Signals	166
Table 78Example PWM Output Frequency and Resolution	167
Table 79SPI Modes	170
Table 80UART 1 Interface Signals	
Table 81UART 2 Interface Signals	
Table 82Baud Rates Achievable with Different DLAB Settings	173
Table 83PMC Signals	
Table 84Transitions Due to Power Failure	183
Table 85Transitions Due to Power Button	183
Table 86System Power Planes	185
Table 87Causes of SMI and SCI	
Table 88INIT# Assertion Causes	
Table 89SPI Signals	
Table 90SPI Flash Regions	
Table 91Region Size Versus Erase Granularity of Flash Components	195
Table 92Region Access Control	
Table 93Hardware Sequencing Commands and Opcode Requirements	
Table 94Recommended Pinout for 8-Pin Serial Flash Device	
Table 95Recommended Pinout for 16-Pin Serial Flash Device	
Table 96UART Signals	
Table 97Baud Rate Examples	
Table 98iLB Signals	
Table 99NMI Sources	
Table 100LPC Signals	
Table 101SERIRQ, Stop Frame Width to Operation Mode Mapping	221
Table 102SERIRQ Interrupt Mapping	
Table 103RTC Signals	
Table 104Register Bits Reset by ILB_RTC_RST# Assertion	
Table 1058254 Signals	
Table 106Counter Operating Modes	
Table 1078254 Interrupt Mapping	
Table 108GPIO Signals	
Table 109Interrupt Controller Connections	
Table 110Interrupt Status Registers	
Table 111Content of Interrupt Vector Byte	250
Table 112SoC Sx-States to SLP_S*#	
Table 113SoC Sx-States to SLP_S*#	259
Table 114General Power States for System	
Table 115ACPI PM State Transition Rules	260
Table 116Processor Core/ States Support	261

Table 117SoC Graphics Adapter State Control	
Table 118Main Memory States	262
Table 119G, S and C State Combinations	. 262
Table 120D, S and C State Combinations	
Table 121Coordination of Core/Module Power States at the Package Level	267
Table 122Temperature Reading Based on DTS (If TJ-MAX =90oC)	273
Table 123SoC Thermal Specifications	277
Table 124Storage Conditions Prior to Board Attach	277
Table 125Intel® Atom™ Processor Z3600/Z3700 Series Type 4 SoC Power Rail DC Specs and	
Max Current	279
Table 126Intel® Atom™ Processor Z3700 Series Type 3 SoC Power Rail DC Specs and Max	
Current	280
Table 127VCC and VNN DC Voltage Specifications	282
Table 128IMVP7.0 Voltage Identification Reference	
Table 129ILB RTC Crystal Specification	290
Table 130Integrated Clock Crystal Specification	291
Table 131DDI Main Transmitter DC specification	
Table 132DDI AUX Channel DC Specification	
Table 133MIPI DSI DC Specification	295
Table 134MIPI HS-RX/MIPI LP-RX Minimum, Nominal, and Maximum Voltage Parameters	
Table 135SDIO DC Specification	296
Table 136SD Card DC Specification	297
Table 137eMMC 4.41 Signal DC Electrical Specifications	
Table 138eMMC 4.51 Signal DC Electrical Specifications	298
Table 139TAP Signal Group DC Specification (TAP_TCK, TAP_TRSRT#, TAP_TMS, TAP_TDI)	
Table 140TAP Signal Group DC Specification (TAP_TDO)	299
Table 141TAP Signal Group DC Specification (TAP_PRDY#, TAP_PREQ#)	299
Table 142DDR3L-RS Signal Group DC Specifications	300
Table 143LPDDR3 Signal Group DC Specifications	300
Table 144LPC Signal Group DC Specification (LPC_V1P8V3P3_S4 = 1.8V (ILB_LPC_AD)[3:0],	
ILB_LPC_FRAME#, ILB_LPC_SERIRQ, ILB_LPC_CLKRUN#))	304
ILB_LPC_FRAME#, ILB_LPC_SERIRQ, ILB_LPC_CLKRUN#))	204
ILB LPC FRAME#, ILB LPC CLKRUN#)	304
Table 146SPI Signal Group DC Specification (PCU_SPI_MISO, PCU_SPI_CS[1:0]#,	205
PCU_SPI_MOSI, PCU_SPI_CLK)	305
Table 148PMC_RSTBTN# 1.8V Core Well Signal Group DC Specification	300
PMC_CORE_PWROK, ILB_RTC_RST#)	306
Table 150iLB RTC Well DC Specification (ILB_RTC_TEST#)	306
Table 151ILB RTC Oscillator Optional DC Specification (ILB_RTC_X1)	300
Table 152PROCHOT# Signal Group DC Specification	307
Table 153SVID Signal Group DC Specification (SVID_DATA, SVID_CLK, SVID_ALERT#)	307 307
Table 1555VID Signal Group DC Specification (SVID_DATA, SVID_CER, SVID_ALERT#)	308
Table 155GPIO 1.8V Suspend Well Signal Group DC Specification (GPIO_S5[43:0])	
Table 1561 ² C Signal Flectrical Specifications	

Revision History

Document Number	Revision Number	Description	Revision Date
329474	001	Initial release	September 2013
329474	002	Changed title to Intel® Atom™ Processor Z3600 and Z3700 Series Added Intel® Atom™ Processor Z3700 Series Type 3 SoC related information in the following:	April 2014
329474	003	 Chapter 1, "Introduction" Updated SKU List and notes for SKU information in Table 1. Updated Media encode and decode details in Table 2. Chapter 2, "Physical Interfaces" Removed PMC_PWRBTN# from the GPIO table, as it is used as dedicated Pin for Reset conditions. Removed Details of BIOS/EFI Top swap from EDS, as it is Non POR. Chapter 5, "Graphics, Video and Display" Updated Video Decode and Encode Format in Table 56 Chapter 29, "Electrical Specifications" Updated DC tolerance of V1P24Sx (VSFR) rail to ±2.5% and Voltage level of V1P05S rail to 1.0V in Table 126. 	December 2014

§

1 Introduction

The Intel® Atom™ Processor Z3600 and Z3700 Series Datasheet is the Intel Architecture (IA) SoC that integrates the next generation $Intel^{®}$ processor core, Graphics, Memory Controller, and I/O interfaces into a single system-on-chip solution.

The figures below show the system level block diagram of the SoC. Refer to the subsequent chapters for detailed information on the functionality of the different interface blocks.

Note:

Throughout this document Intel® Atom $^{\text{TM}}$ Processor Z3600 And Z3700 Series is referred as SoC.

Figure 1. Type 4 SoC Block Diagram

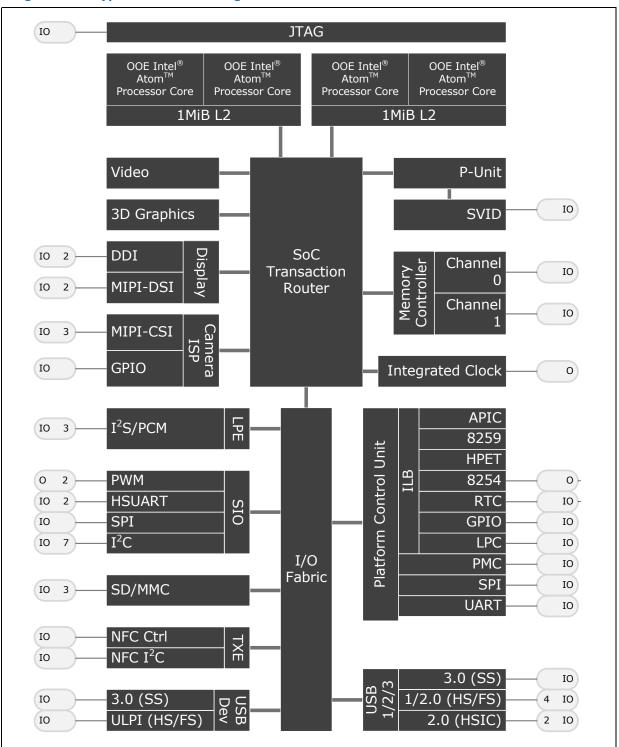
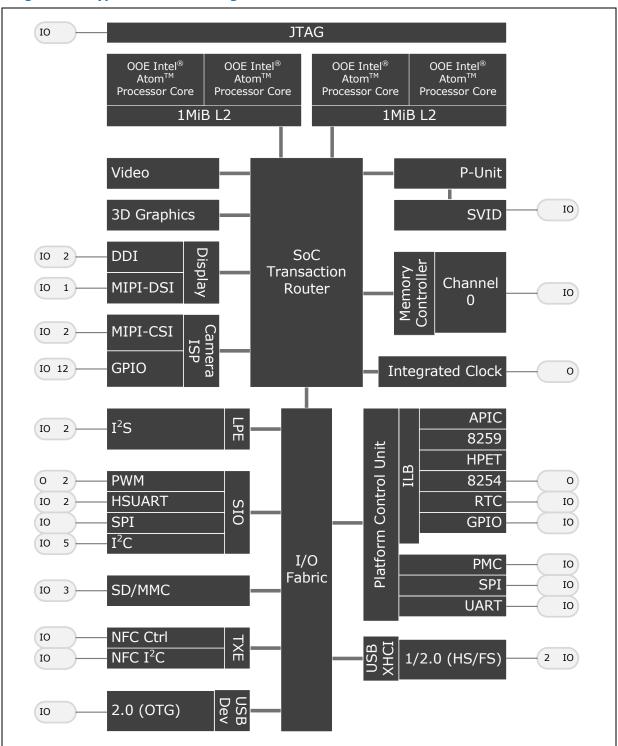



Figure 2. Type 3 SoC Block Diagram

1.1 Terminology

Term	Description
ACPI	Advanced Configuration and Power Interface
Cold Reset	Full reset is when PWROK is de-asserted and all system rails except VCCRTC are powered down
CRT	Cathode Ray Tube
CRU	Clock Reset Unit
DP	Display Port
DTS	Digital Thermal Sensor
EIOB	Electronic In/Out Board
EMI	Electro Magnetic Interference
eDP	embedded Display Port
HDMI	High Definition Multimedia Interface. HDMI supports standard, enhanced, or high-definition video, plus multi-channel digital audio on a single cable. HDMI transmits all Advanced Television Systems Committee (ATSC) HDTV standards and supports 8-channel digital audio, with bandwidth to spare for future requirements and enhancements (additional details available at http://www.hdmi.org/).
IGD	Internal Graphics Unit
Intel [®] TXE	Intel® Trusted Execution Engine
LCD	Liquid Crystal Display
LPDDR	Low Power Dual Data Rate memory technology.
LPE	Low Power Engine
MIPI CSI	MIPI Camera Interface Specification
MIPI DSI	MIPI Display Interface Specification
MPEG	Moving Picture Experts Group
MSI	Message Signaled Interrupt. MSI is a transaction initiated outside the host, conveying interrupt information to the receiving agent through the same path that normally carries read and write commands.
MSR	Model Specific Register, as the name implies, is model-specific and may change from processor model number (n) to processor model number (n+1). An MSR is accessed by setting ECX to the register number and executing either the RDMSR or WRMSR instruction. The RDMSR instruction will place the 64 bits of the MSR in the EDX: EAX register pair. The WRMSR writes the contents of the EDX: EAX register pair into the MSR.
PWM	Pulse Width Modulation
Rank	A unit of DRAM corresponding to the set of SDRAM devices that are accessed in parallel for a given transaction. For a 64-bit wide data bus using 8-bit (x8) wide SDRAM devices, a rank would be eight devices. Multiple ranks can be added to increase capacity without widening the data bus, at the cost of additional electrical loading.
SCI	System Control Interrupt. SCI is used in the ACPI protocol.
SDRAM	Synchronous Dynamic Random Access Memory

Term	Description
SERR	System Error. SERR is an indication that an unrecoverable error has occurred on an I/O bus.
SKU	Stock Keeping Units
SMC	System Management Controller or External Controller refers to a separate system management controller that handles reset sequences, sleep state transitions, and other system management tasks.
SMI	System Management Interrupt is used to indicate any of several system conditions (such as thermal sensor events, throttling activated, access to System Management RAM, chassis open, or other system state related activity).
SIO	Serial I/O
TMDS	Transition-Minimized Differential Signaling. TMDS is a serial signaling interface used in DVI and HDMI to send visual data to a display. TMDS is based on low-voltage differential signaling with 8/10b encoding for DC balancing.
VCO	Voltage Controlled Oscillator
Warm Reset	Warm reset is when both PMC_PLTRST# and PMC_CORE_PWROK are asserted.

1.2 Feature Overview

All features subject to software availability.

1.2.1 Type 4 SoC

Processor Core

Refer Chapter 3, "Processor Core" for more details.

- Dual or Quad-core CPU
- Up to four IA-compatible low power Intel® processor cores
 - One thread per core
- Two-wide instruction decode, out of order execution
- On-die, 32 KB 8-way L1 instruction cache and 24 KB 6-way L1 data cache per core
- On-die, 1 MB, 16-way L2 cache, shared per two cores
- 36-bit physical address, 48-bit linear address size support
- Supported C-states: C0, C1, C1E, C6C, C6, C7
- Supports Intel® Burst Technology

System Memory Controller

Refer Chapter 4, "System Memory Controller" for more details.

- Supports up to two channels of LPDDR3
- Supports one Channel of DDR3L

- 64 bit data bus for each channel
- ECC supported in single channel mode only Supports LPDDR3 with 1066 MT/s data rate
- Supports x64 LPDDR3 SDRAM package data widths
- Supports x16 DDR3L-RS SDRAM device data widths
- Total memory bandwidth supported is 8.5GB/s (for 1066 MT/s single-channel) to 17.1GB/s (for 1066 MT/s dual-channel)
- Supports DDR3L-RS with 1333 MT/s data rate
 - Total memory bandwidth supported is 10.6 GB/s (for 1333 MT/s single channel)
- Supports different physical mappings of bank addresses to optimize performance
- Out-of-order request processing to increase performance
- Aggressive power management to reduce power consumption
- Proactive page closing policies to close unused pages
- Supports soldered down DRAM devices

Display Controller

Refer Chapter 5, "Graphics, Video and Display" for more details.

- Support 2 MIPI DSI ports with Stereoscopic 3D formats
- Support 2 DDI ports to enable eDP 1.3, DP 1.1a, DVI, or HDMI 1.4a
- Support 2 panel power sequence for 2 eDP ports
- Support Audio on DP and HDMI
- Supports Intel[®] Display Power Saving Technology (DPST) 6.0, Panel Self Refresh (PSR) and Display Refresh Rate Switching Technology (DRRS)

Graphics and Media Engine

Refer Chapter 5, "Graphics, Video and Display" for more details.

- Intel's 7th generation (Gen 7) graphics and media encode/decode engine
- VED video decoder in addition to Gen 7 Media decoder
- Graphics Burst enabled through energy counters
- Supports DX*11, OpenGL 3.0 (OGL 3.0), OpenCL 1.2 (OCL 1.2), OpenGLES 2.0 (OGLES 2.0)
- GPU shader is capable of up to 8 gigaflops
- 4x anti-aliasing
- Full HW acceleration for decode of H.264, MPEG2, MVC, VC-1, VP8, MJPEG
- Full HW acceleration for encode of H.264, MPEG2, MVC
- Supports 2.0 Stereoscopic 3D Stretch

- Polyphase 8 tap scaling
- HD HQV

Image Signal Processor

Refer Chapter 6, "MIPI-Camera Serial Interface (CSI) and ISP" for more details.

- Support up to three MIPI CSI ports
- Support for up to 24MP sensors
- Supports Stereoscopic Video

Power Management

Refer Chapter 27, "Power Management" for more details.

- ACPI 5.0 support
- Processor states: C0-C7
- Display device states: D0, D0ix D3
- Graphics device states: D0, D0i3, D3
- System sleep states: S0, S0i1, S0i2, S0i3, S4, S5
- Support CPU and GFX Burst for selected SKUs
- Dynamic I/O power reductions (disabling sense amps on input buffers, tristating output buffers)
- Conditional memory self-refresh during C2-C6
- · Active power-down of display links
- Downloadable power management firmware

USB xHCI Controller

Refer Chapter 10, "USB Host Controller Interfaces (xHCI, EHCI)" for more details.

- Supports USB 3.0/2.0/1.1
- Implements xHCI software host controller interface
- One USB 3.0 Super Speed (SS) port
- Four ports multiplexed with EHCI controller that are High Speed/Full Speed (HS/FS)

USB 2.0 EHCI Controller

Refer Chapter 10, "USB Host Controller Interfaces (xHCI, EHCI)" for more details.

- Internal Rate Matching Hub to support USB 1.1 to 2.0 devices
- Four Ports multiplexed with xHCI controller
- Enhanced EHCI descriptor caching

USB 2.0 (ULPI) and 3.0 Device

Refer Chapter 9, "USB Device Controller Interfaces (3.0, ULPI)" for more details.

- Supports one USB 3.0 SS port with USB device compatibility
- Supports one ULPI port with HS/LS support

Audio Controllers

Low Power Engine (LPE) Audio

LPE is a complete audio solution based on an internal audio processing engine, which includes three I^2S output ports. Refer Chapter 7, "Low Power Engine (LPE) for Audio (I^2S) " for more details.

LPE supports:

- I²S and DDI with dedicated DMA
- MP3, AAC, AC3/DD+, WMA9, PCM (WAV)

Note: Codecs supported depend on software and may be different.

Storage Control Cluster (eMMC, SDIO, SD)

Refer Chapter 8, "Storage Control Cluster (eMMC, SDIO, SD Card)" for more details.

- Supports one SDIO 3.0 controller
- Supports one eMMC 4.51 controller
- Supports one SDXC controller

Intel® Trusted Execution Engine (Intel® TXE)

Intel TXE system contains a security engine and additional hardware security features that enable a secure and robust platform.

Refer Chapter 13, "Intel® Trusted Execution Engine (Intel® TXE)" for more details.

Security features include:

- Isolated execution environment for crypto operations (SKU-enabled)
- Theft deterrence
- Supports secure boot with customer programmable keys to secure code

Note: The SoC requires TXE firmware in the PCU SPI flash image to function.

Serial I/O (SIO)

Refer Chapter 12, "Serial IO (SIO) Overview" for links to more information about each interface.

Controller for external devices via SPI, UART, I²C or PWM

- Each port is multiplexed with general purpose I/O for configurations flexibility
- Supports up to 7 I²C, 2 HSUART, 2 PWM, 1 SPI interface

Platform Control Unit (PCU)

The platform controller unit is a collection of HW blocks, including UART, debug/boot SPI and Intel legacy block (iLB), that are critical to implement a Windows* compatible platform. Refer Chapter 14, "Platform Controller Unit (PCU) Overview" for links to more information about each interface.

Key PCU features include:

- Universal Asynchronous Receiver/Transmitter (UART) with COM1 interface
- A Serial Peripheral Interface (SPI) for Flash only stores boot FW and system configuration data
- Intel Legacy Block (iLB) supports legacy PC platform features
 - RTC, Interrupts, Timers, General Purpose I/Os (GPIO) and Peripheral interface (LPC for TPM) blocks.

Package

This SoC is packaged in a Flip-Chip Ball Grid Array (FCBGA) package with 1380 solder balls with 0.40 mm (minimum) ball pitch. The package dimensions are 17mm x 17mm. Refer Chapter 30, "Ballout and Package Information" for more details.

1.2.2 Type 3 SoC

Processor Core

Refer Chapter 3, "Processor Core" for more details.

- Quad-core SoC
- Up to four IA-compatible low power Intel® processor cores
 - One thread per core
- Two-wide instruction decode, out of order execution
- On-die, 32 KB 8-way L1 instruction cache and 24 KB 6-way L1 data cache per core
- On-die, 1 MB, 16-way L2 cache, shared per two cores
- 36-bit physical address, 48-bit linear address size support
- Supported C-states: C0, C1, C1E, C4, C6CNS, C6, C7
- Supports Intel[®] Virtualization Technology (Intel[®] VT-x)
- Supports Intel[®] Burst Technology

System Memory Controller

Refer Chapter 4, "System Memory Controller" for more details.

- Supports one Channel of DDR3L/L-RS
- 16 bit data bus for each channel
- Supports x32 and x64 DDR3L/L-RS SDRAM device data widths
- Supports DDR3L/L-RS with 1333 MT/s data rates
 - Memory bandwidth supported is 10.6 GB/s (for x64 data width 1333 MT/s single channel)
 - Memory bandwidth supported is 5.3 GB/s (for x32 data width 1333 MT/s single channel)
- Supports different physical mappings of bank addresses to optimize performance
- Out-of-order request processing to increase performance
- Aggressive power management to reduce power consumption
- Proactive page closing policies to close unused pages
- Supports soldered down DRAM devices

Display Controller

Refer Chapter 5, "Graphics, Video and Display" for more details.

- Support 1 MIPI DSI port
 - MIPI DSI resolution supported: 19x12
- Support 2 DDI port to enable HDMI 1.4
 - HDMI resolution supported: 1080p
- Support Audio on HDMI
- Supports Intel[®] Display Power Saving Technology (DPST) 6.0, Panel Self Refresh (PSR) and Display Refresh Rate Switching Technology (DRRS)
- Supports 1080p30fps video playback for both 1x32 and 1x64 memory configuration.

Graphics and Media Engine

Refer Chapter 5, "Graphics, Video and Display" for more details.

- Intel's 7th generation (Gen 7) graphics and media encode/decode engine
- VED video decoder in addition to Gen 7 Media decoder
- Graphics Burst enabled through energy counters
- Supports DX*11, OpenGL 3.0 (OGL 3.0), OpenCL 1.1 (OCL 1.1), OpenGLES 2.0 (OGLES 2.0)
- GPU shader is capable of up to 8 gigaflops

- 4x anti-aliasing
- Full HW acceleration for decode of 1080p60 (H.264, VP8, WMV9, VC1)
- Full HW acceleration for encode of 1080p30 (H.264, VP8, WMV9, VC1)
- Intel[®] Wireless Display (WiDi) support

Image Signal Processor

Refer Chapter 6, "MIPI-Camera Serial Interface (CSI) and ISP" for more details.

- Support up to two MIPI CSI ports
- Support for up to 8MP sensors.
 - Max Rear Camera MP: 2M-8MPixel
 - Max Front Camera MP: 0.3M-2MPixel
- Supports 1080p30fps/720p30fps Video recording.

Power Management

Refer Chapter 27, "Power Management" for more details.

- ACPI 5.0 support
- Processor states: C0-C7
- Display device states: D0, D0ix D3
- Graphics device states: D0, D0i3, D3
- System sleep states: S0, S0i1, S0i2, S0i3, S4, S5
- Support SoC and GFX Burst for selected SKUs
- Dynamic I/O power reductions (disabling sense amps on input buffers, tristating output buffers)
- · Active power-down of display links
- Downloadable power management firmware

USB xHCI Controller

Refer Chapter 10, "USB Host Controller Interfaces (xHCI, EHCI)" for more details.

Supports 2 USB 2.0/1.1 Host port.

Note: Only one host controller (xHCI or ECHI) can be used.

USB EHCI Controller

Refer Chapter 10, "USB Host Controller Interfaces (xHCI, EHCI)" for more details.

• Supports 2 USB 2.0/1.1 Host port.

NOTES:

- 1. The EHCI is not used when the xHCI is used. The EHCI is primarily present for legacy usage, in cases when xHCI support is not available.
- 2. Intel recommends using the xHCI controller for the USB2.0 ports. The EHCI controller is provided for legacy OS/driver compatibility which is generally not required for tablet platforms. Using the xHCI controller will deliver significant power and performance benefits.
- 3. When using only EHCI on a platform, the Windows logo requirement of USB debug port may not be met. Consult with Intel regarding the impact of this.

USB 2.0 (ULPI) Device Mode

Refer Chapter 9, "USB Device Controller Interfaces (3.0, ULPI)" for more details.

• Supports one USB 2.0 port with USB device compatibility.

Audio Controllers

Low Power Engine (LPE) Audio

LPE is a complete audio solution based on an internal audio processing engine, which includes 2 $\rm I^2S$ output ports. Refer Chapter 7, "Low Power Engine (LPE) for Audio ($\rm I^2S$)"for more details.

LPE supports:

- I²S and DDI with dedicated DMA
- MP3, AAC, AC3/DD+, WMA9, PCM (WAV)

Note: Codecs supported depend on software and may be different.

Storage Control Cluster (eMMC, SDIO, SD)

Refer Chapter 8, "Storage Control Cluster (eMMC, SDIO, SD Card)" for more details.

- Supports one SDIO 3.0 controller
- Supports one eMMC 4.5 controller
- Supports one SDXC controller

Intel® Trusted Execution Engine (Intel® TXE)

Intel TXE system contains a security engine and additional hardware security features that enable a secure and robust platform.

Refer Chapter 13, "Intel® Trusted Execution Engine (Intel® TXE)" for more details.

Security features include:

• Isolated execution environment for crypto operations

- Theft deterrence
- Supports secure boot with customer programmable keys to secure code

Note: The SoC requires TXE firmware in the PCU SPI flash image to function.

Serial I/O (SIO)

Refer Chapter 12, "Serial IO (SIO) Overview" for more details.

- Controller for external devices via SPI, UART, I²C or PWM
- Each port is multiplexed with general purpose I/O for configurations flexibility
- Supports up to 5 general purpose I²C, 2 HSUART, 2 PWM, 1 SPI interface

Platform Control Unit (PCU)

The platform controller unit is a collection of HW blocks, including UART, debug/boot SPI and Intel legacy block (iLB), that are critical to implement a Windows* compatible platform. Refer Chapter 14, "Platform Controller Unit (PCU) Overview" for more details.

Key PCU features include:

- Universal Asynchronous Receiver/Transmitter (UART) with COM1 interface
- A Serial Peripheral Interface (SPI) for Flash only stores boot FW and system configuration data
- Intel Legacy Block (iLB) supports legacy PC platform features
 - RTC, Interrupts, Timers, General Purpose I/Os (GPIO).

Package

This SoC is packaged in a Flip-Chip Ball Grid Array (FCBGA) package with 592 solder balls with 0.65mm (minimum) ball pitch. The package dimensions are 17mm x 17mm. See Chapter 30, "Ballout and Package Information" for more details.

1.3 SKU Information

Table 1. SoC SKU List

Processor Number	Stepping	SDP(W)	Core LFM (MHz)/ HFM (GHz)	Core max Burst (GHz)	Tjmax(°C)	GFx Normal/ Burst (MHz)	Memory Channel	Memory Speed (MT/s)
Z3770	B-2	2.0	532/1.46	2.4	90	311/667	1x64	LPDDR3-1067
Z3740	B-2	2.0	532/1.33	1.8	90	311/677	1x64	LPDDR3-1067
Z3770D	B-2	2.2	500/1.5	2.4	90	313/688	1x64	DDR3L-RS- 1333
Z3740D	B-2	2.2	500/1.33	1.83	90	313/688	1x64	DDR3L-RS- 1333
Z3770	B-3	2.0	532/1.46	2.39	90	311/667	1x64	LPDDR3-1067
Z3740	B-3	2.0	532/1.33	1.86	90	311/677	1x64	LPDDR3-1067
Z3770D	B-3	2.2	500/1.5	2.4	90	313/688	1x64	DDR3L-RS- 1333
Z3740D	B-3	2.2	500/1.33	1.83	90	313/688	1x64	DDR3L-RS- 1333
Z3680	B-3	2.0	532/1.33	2.0	90	311/667	1x64	LPDDR3-1067
Z3680D	B-3	2.2	500/1.33	2.0	90	313/688	1x64	DDR3L-RS- 1333
Z3745	C-0	2.0	532/1.33	1.86	105	311/778	1x64	LPDDR3-1067
Z3745D	C-0	2.2	500/1.33	1.83	105	313/792	1x64	DDR3L-RS- 1333
Z3795	C-0	2.0	532/1.66	2.39	105	311/778	1x64	LPDDR3-1067
Z3775	C-0	2.0	532/1.46	2.39	105	311/778	1x64	LPDDR3-1067
Z3785	C-0	2.2	500/1.5	2.416	105	313/833	2x64	LPDDR3 - 1067
Z3775D	C-0	2.2	500/1.5	2.416	105	313/792	1x64	DDR3L-RS- 1333
Z3735D	C-0	2.2	500/1.33	1.83	105	313/646	1x64	DDR3L-RS- 1333
Z3735E	C-0	2.2	500/1.33	1.83	105	313/646	1x32	DDR3L-RS- 1333
Z3735F	C-0	2.2	500/1.33	1.83	90	313/646	1x64	DDR3L-RS- 1333
Z3735G	C-0	2.2	500/1.33	1.83	90	313/646	1x32	DDR3L-RS- 1333
Z3736F	C-0	2.2	500/1.33	2.16	90	313/646	1x64	DDR3L-RS- 1333
Z3736G	C-0	2.2	500/1.33	2.16	90	313/646	1x32	DDR3L-RS- 1333

NOTES:

- 1. Z3735D, Z3735E, Z3735F, Z3735G Entry SKUs support 1C/2C burst up to 1.83 GHz, 3C/4C burst up to 1.58GHz. The POR feature set of these SKUs is mentioned in Section 1.2.2 above.
- Z3735D, Z3735E are in Type 4 Package. For the ballout and package mechanical information pertaining to these SKUs, refer Section 30.1 in Chapter 30, "Ballout and Package Information".
 Z3735F, Z3735G, Z3736F, Z3736G are in Type 3 Package or for the ballout and package
- 3. 23/35F, 23/35G, 23/36F, 23/36G are in Type 3 Package or for the ballout and package mechanical information pertaining to these SKUs, refer Section 30.2 in Chapter 30, "Ballout and Package Information".

1.4 Difference between SoC SKUs

Table 2. Difference between SoC SKUs

Interface	Category	Intel® Atom™ Processor Z3600/Z3700 Series Type 4 SoC	Intel® Atom™ Processor Z3700 Series Type 3 SoC		
	IO count	620+	367		
Package	Ball count	1380	592		
	Min Ball pitch	0.4mm	0.65mm		
	Interface, Max transfer data rate	Dual Channel 2x64 bit, LPDDR3 -1066MT/S, 1x64 DDR3L-RS -1333MT/S	Single Channel 1x64, 1x32 DDR3L/L-RS - 1333MT/S		
Memory	Min, Max Capacity	Min: 1GB LPDDR3 or 2GB for DDR3L-RS Max: 4GB LPDDR3 or 2GB DDR3L-RS	Min: 1GB, DDR3L/L-RS Max: 2GB, DDR3L/L-RS		
Imaging	Number of ports	3 CSI ports	2 CSI ports		
Media	Media decode rate	Upto 1080p@60fps and 3x 4kx2k @30fps (H.264/JPEG/ MJPEG/MVC/MPEG-2 /WMV9/ VC1)	Upto 1080p@60fps (H.264/JPEG/MJPEG/MVC/ MPEG-2/WMV9/VC1)		
	Media encode rate	Upto 1080p@60fps and 1x 4kx2k @30fps (H.264)	Upto 1080p@60fps (H.264)		
Audio	LPE (Low Power Engine)	3 I2S ports	2 I2S ports		
	USB3	1x USB3 xHCI (includes 1 host + device)	Not Supported		
Connectivity	USB2	4xUSB2 xHCI	2x USB 2.0 Host + 1x Device		
and Storage	USB HSIC	2x USB HSIC	Not Supported		
	LPC	YES	Not Supported		
	LP I/O's	7 I2C, 2 SPI	5 I2C, 1 SPI		
Video/Display	Max MIPI DSI Resolution Recommended	25x16	19x12 - 1x64 DDR3L/L-RS, 12x8 -1x32 DDR3L/L-RS ^[1]		
	MIPI-DSI	2x 4 Lanes 1Ghz	1x 4 Lanes 1Ghz		

NOTE:

1. Higher resolutions MIPI DSI may be supported, but may lead to performance loss.

1.5 References

Refer to the following documents, which may be beneficial when reading this document or for additional information:

Document	Document Number
Intel® 64 and IA-32 Architectures Software Developer's Manuals Volume 1: Basic Architecture Volume 2A: Instruction Set Reference, A-M Volume 2B: Instruction Set Reference, N-Z Volume 3A: System Programming Guide Volume 3B: System Programming Guide	http://www.intel.com/products/ processor/manuals/index.htm
Intel® Atom™ Processor Z3000 Series Specification Update	329475

2 Physical Interfaces

Many interfaces contain physical pins. These groups of pins make up the physical interfaces. Because of the large number of interfaces and the small size of the package, Some interfaces share their pins with GPIOs, while others use dedicated physical pins. This section summarizes the physical interfaces, including the diversity in GPIO multiplexing options.

Figure 3. Signals Pin List (1 of 2)

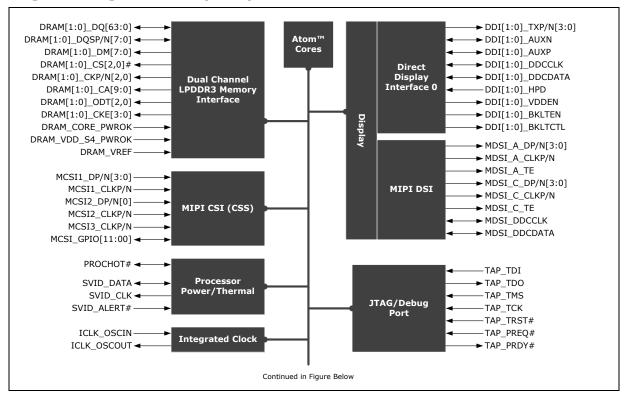
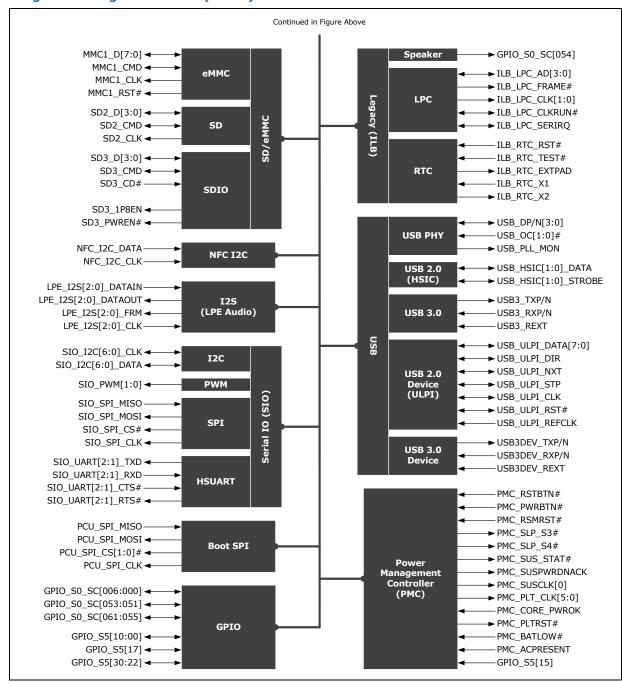



Figure 4. Signals Pin List (2 of 2)

2.1 Pin States Through Reset

This section describes the states of each signal before, during and directly after reset. Additionally, Some signals have internal pull-up/pull-down termination resistors, and their values are also provided. All signals with the "†" symbol are muxed and may not be available without configuration. Refer Section 2.26, "Configurable IO: GPIO Muxing" on page 54.

Table 3. Platform Power Well Definitions

Power Type	Power Well Description
V1P05S	1.05 V rail. On in S0 and S0ix only.
V1P0A	1.0 V rail. On in S0 through S4/5.
V1P0S	1.0 V rail. On in S0 and S0ix only.
V1P0Sx	1.0 V rail. On in S0 only.
V1P24A	1.24 V rail. On in S0 through S4/5.
V1P24S	1.24 V rail. On in S0 and S0ix only.
V1P24Sx	1.24 V rail. On in S0 only.
V1P35U	1.35 V rail. On in S0 through S0iX.
V1P8A	1.8 V rail. On in S0 through S4/5.
V1P35S	1.35 V rail. On in S0 and S0ix only.
V1P8S	1.8 V rail. On in S0 and S0ix only.
V3P3A	3.3 V rail. On in S0 through S4/5.
VAUD	1.5 V rail for HD Audio. 1.8 V rail for I ² S. On in S0 and S0ix only.
VCC	Variable core rail. On in S0 and S0ix only.
VLPC	1.8 or 3.3 V rail for LPC. On in S0 and S0ix only.
VNN	Variable rail. On in S0 and S0ix only.
VRTC	RTC voltage rail. On in S0 through G3.
VSDIO	1.8 or 3.3 V rail for SD3. On in S0 and S0ix only.
VSFR	1.24 V rail for internal PLLs. On in S0 and S0ix only.
VUSB2	3.3 V rail. On in S0 through S4/5.
VVGA_GPIO	3.3 V rail for VGA sideband. On in S0 and S0ix only.

Table 4. Default Buffer State Definitions (Sheet 1 of 2)

Buffer State	Description
High-Z	The SoC places this output in a high-impedance state. For inputs, external drivers are not expected.
Do Not Care	The state of the input (driven or tristated) does not affect the SoC. For outputs, it is assumed that the output buffer is in a high-impedance state.
V _{OH}	The SoC drives this signal high with a termination of 50 Ω .
V _{OL}	The SoC drives this signal low with a termination of 50 Ω .

 Table 4.
 Default Buffer State Definitions (Sheet 2 of 2)

Buffer State	Description
Unknown	The SoC drives or expects an indeterminate value.
V _{IH}	The SoC expects/requires the signal to be driven high.
V _{IL}	The SoC expects/requires the signal to be driven low.
Pull-up	This signal is pulled high by a pull-up resistor (internal value specified in "Term" column).
Pull-down	This signal is pulled low by a pull-down resistor (internal value specified in "Term" column).
Running/T	The clock is toggling, or the signal is transitioning.
Off	The power plane for this signal is powered down. The SoC does not drive outputs, and inputs should not be driven to the SoC. (VSS on output)

2.2 System Memory Controller Interface Signals

Refer Chapter 4, "System Memory Controller" for more details.

Table 5. LPDDR3 System Memory Signals (Sheet 1 of 2)

					Default Bu	uffer State	
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix
DRAM0_CA[9:0]	0	-	V1P24S	Off	High-Z	High-Z	
DRAM0_CKP[2,0]	0	-	V1P24S	Off	High-Z	High-Z	
DRAM0_CKN[2,0]	0	-	V1P24S	Off	High-Z	High-Z	
DRAM0_CKE[3:0]	0	-	V1P24S	Off	V _{OL}	V _{OL}	
DRAM0_CS#[2,0]	0	-	V1P24S	Off	V _{OH}	V _{OH}	
DRAM0_ODT[2,0]	0	-	V1P24S	Off	V _{OL}	V _{OL}	
DRAM0_DQ[63:0]	I/O	-	V1P24S	Off	High-Z	High-Z	
DRAM0_DM[7:0]	0	-	V1P24S	Off	High-Z	High-Z	
DRAM0_DQSP[7:0]	I/O	-	V1P24S	Off	High-Z	High-Z	
DRAM0_DQSN[7:0]	I/O	-	V1P24S	Off	High-Z	High-Z	
DRAM1_CA[9:0]	0	-	V1P24S	Off	High-Z	High-Z	
DRAM1_CKP[2,0]	0	-	V1P24S	Off	High-Z	High-Z	
DRAM1_CKN[2,0]	0	-	V1P24S	Off	High-Z	High-Z	
DRAM1_CKE[3:0]	0	-	V1P24S	Off	V _{OL}	V _{OL}	
DRAM1_CS#[2,0]	0	-	V1P24S	Off	V _{OH}	V _{OH}	
DRAM1_ODT[2,0]	0	-	V1P24S	Off	V _{OL}	V _{OL}	
DRAM1_DQ[63:0]	I/O	-	V1P24S	Off	High-Z	High-Z	
DRAM1_DM[7:0]	0	-	V1P24S	Off	High-Z	High-Z	
DRAM1_DQSP[7:0]	I/O	-	V1P24S	Off	High-Z	High-Z	

Table 5. LPDDR3 System Memory Signals (Sheet 2 of 2)

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
DRAM1_DQSN[7:0]	I/O	-	V1P24S	Off	High-Z	High-Z			
DRAM_VDD_S4_PWROK	I	-	V1P24S	V_{IL}	Unknown	V _{IH}			
DRAM_CORE_PWROK	I	-	V1P24S	V_{IL}	Unknown	V _{IH}			
DRAM_VREF	I	-	V1P24S						
DRAM_RCOMP[2:0]	I/O	-	V1P24S						

 Table 6.
 DDR3L-RS System Memory Signals

				Default Buffer State				
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ixNotes	
DRAM0_CKP[0]	0	-	V1P35U	Off	High-Z	High-Z		
DRAM0_CKN[0]	0	-	V1P35U	Off	High-Z	High-Z		
DRAM0_CS#[0]	0	-	V1P35U	Off	V _{OH}	V _{OH}		
DRAM0_CKE[1,0]	0	-	V1P35U	Off	V _{OL}	V _{OL}		
DRAM0_CAS#	0	-	V1P35U	Off	High-Z	High-Z		
DRAM0_RAS#	0	-	V1P35U	Off	High-Z	High-Z		
DRAM0_WE#	0	-	V1P35U	Off	High-Z	High-Z		
DRAM0_BS[2:0]	0	-	V1P35U	Off	High-Z	High-Z		
DRAM0_DRAMRST#	0	-	V1P35U	Off	-	-		
DRAM0_ODT[0]	0	-	V1P35U	Off	V _{OL}	V _{OL}		
DRAM0_DQ[63:0]	I/O	-	V1P35U	Off	High-Z	High-Z		
DRAM0_DM[7:0]	0	-	V1P35U	Off	High-Z	High-Z		
DRAM0_DQSP[7:0]	I/O	-	V1P35U	Off	High-Z	High-Z		
DRAM0_DQSN[7:0]	I/O	-	V1P35U	Off	High-Z	High-Z		
DRAM_VDD_S4_PWROK	I	-	V1P35U	V_{IL}	Unknown	V_{IH}		
DRAM_CORE_PWROK	I	-	V1P35U	V_{IL}	Unknown	V_{IH}		
DRAM_VREF	I	-	V1P35U					
DRAM_RCOMP[2:0]	-	-	V1P35U					

2.3 USB 2.0 Host (EHCI/xHCI) Interface Signals

Refer Chapter 10, "USB Host Controller Interfaces (xHCI, EHCI)" for more details.

Table 7. USB 2.0 Interface Signals

				Default Buffer State				
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix	
USB_DN[3:0]	I/O	-	VUSB2					
USB_DP[3:0]	I/O	-	VUSB2					
USB_OC[1:0]#†	I	20k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up	
USB_RCOMPI	I	-	-					
USB_RCOMPO	0	-	-					

NOTE: All signals with the "+" symbol are muxed and may not be available without configuration.

2.4 USB 2.0 HSIC Interface Signals

Refer Chapter 10, "USB Host Controller Interfaces (xHCI, EHCI)" for more details.

Table 9. USB 2.0 HSIC Interface Signals

				Default Buffer State			
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix
USB_HSICO_DATA	I/O	-	V1P24A				
USB_HSIC0_STROBE	I/O	-	V1P24A				
USB_HSIC1_DATA	I/O	-	V1P24A				
USB_HSIC1_STROBE	I/O	-	V1P24A				
USB_HSIC_RCOMP	I	-	V1P24A				

2.5 USB 3.0 (xHCI) Host Interface Signals

Refer Chapter 10, "USB Host Controller Interfaces (xHCI, EHCI)" for more details.

Table 11. USB 3.0 Interface Signals

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
USB3_TXN[0]	0	-	V1P0A						
USB3_TXP[0]	0	-	V1P0A						
USB3_RXN[0]	I	-	V1P0A						
USB3_RXP[0]	I	-	V1P0A						
USB3_REXT[0]	I	-	V1P0A	V _{OL}	V _{OH}	V _{OH}			

2.6 USB 2.0 Device (ULPI) Interface Signals

Refer Chapter 9, "USB Device Controller Interfaces (3.0, ULPI)" for more details.

Table 12. USB 2.0 Device (ULPI) Interface Signals

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
USB_ULPI_CLK†	I	20k(L)	V1P8A	Pull-down	Pull-down	Pull-down	Pull-down		
USB_ULPI_DATA[0:7]†	I/O	20k(L)	V1P8A	Pull-down	Pull-down	Pull-down	Pull-down		
USB_ULPI_DIR†	I	20k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up		
USB_ULPI_NXT†	I	20k(L)	V1P8A	Pull-down	Pull-down	Pull-down	Pull-down		
USB_ULPI_STP†	0	20k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up		
USB_ULPI_REFCLK†	0	20k(L)	V1P8A	Pull-down	Pull-down	Pull-down	Pull-down		
USB_ULPI_RST#†	0	-	V1P8A						

NOTE: All signals with the "†" symbol are muxed and may not be available without configuration.

2.7 USB 3.0 Device Interface Signals

Refer Chapter 9, "USB Device Controller Interfaces (3.0, ULPI)" for more details.

Table 13. USB 3.0 Device Interface Signals (Sheet 1 of 2)

					Default Bu	uffer State	
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix
USB3DEV_TXN[0]	0	-	V1P0S				
USB3DEV_TXP[0]	0	-	V1P0S				

Table 13. USB 3.0 Device Interface Signals (Sheet 2 of 2)

				Default Buffer State			
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix
USB3DEV_RXN[0]	I	-	V1P0S				
USB3DEV_RXP[0]	I	-	V1P0S				
USB3DEV_REXT[0]	I	-	V1P0S				

2.8 Integrated Clock Interface Signals

Refer Chapter 11, "Integrated Clock" for more details.

Table 14. Integrated Clock Interface Signals

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
ICLK_OSCIN	I	-		Off	Running	Running			
ICLK_OSCOUT	0	-		Off	Running	Running			
ICLK_ICOMP	-	-		Off					
ICLK_RCOMP	-	-		Off					
ICLK_DRAM_TERM[1:0]	-	-	-	Pull-down	Pull-down	Pull-down			
ICLK_USB_TERM[1:0]	-	-	-	Pull-down	Pull-down	Pull-down			

2.9 Display - Digital Display Interface (DDI) Signals

Refer Chapter 5, "Graphics, Video and Display" for more details.

Table 16. Digital Display Interface Signals (Sheet 1 of 2)

					Default Buf	iffer State		
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix	
DDI0_TXP[3:0]	0		V1P0Sx	Off				
DDI0_TXN[3:0]	0		V1P0Sx	Off				
DDI0_AUXP	I/O		V1P0Sx	Off				
DDI0_AUXN	I/O		V1P0Sx	Off				
DDI0_BKLTCTL†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI0_BKLTEN†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI0_DDCCLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up		

Table 16. Digital Display Interface Signals (Sheet 2 of 2)

				Default Buffer State				
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix	
DDI0_DDCDATA†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI0_HPD†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI0_VDDEN†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI_RCOMP_P/N	-	-	V1P0Sx					
DDI1_TXP[3:0]	0		V1P0Sx	Off				
DDI1_TXN[3:0]	0		V1P0Sx	Off				
DDI1_AUXP	I/O		V1P0Sx	Off				
DDI1_AUXN	I/O		V1P0Sx	Off				
DDI1_BKLTCTL†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI1_BKLTEN†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI1_DDCCLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up		
DDI1_DDCDATA†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI1_HPD†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		
DDI1_VDDEN†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down		

NOTE: All signals with the "†" symbol are muxed and may not be available without configuration.

2.10 MIPI DSI Interface Signals

Refer Chapter 5, "Graphics, Video and Display" for more details.

Table 18. MIPI DSI Interface Signals

						Default Bu	ffer State	
Signal Name	Dir	Term	Plat. Power	Туре	S4/S5	Reset	Enter S0	S0ix
MDSI_A_TE	I/O	20k(L)	V1P8S	CMOS	Off	Pull-down	Pull- down	Pull- down
MDSI_C_TE	I	20k(L)	V1P8S	CMOS	Off	Pull-down	Pull- down	Pull- down
MDSI_A_CLKN	0		V1P24S					
MDSI_A_CLKP	0		V1P24S					
MDSI_A_DN[0:3]	I/O		V1P24S					
MDSI_A_DP[0:3]	I/O		V1P24S					
MDSI_C_CLKN	0		V1P24S					
MDSI_C_CLKP	0		V1P24S					
MDSI_C_DN[0:3]	I/O		V1P24S					
MDSI_C_DP[0:3]	I/O		V1P24S					
MDSI_RCOMP	-		V1P24S					
MDSI_DDCDATA	I/O	20k(H)	V1P8S	CMOS_OD				
MDSI_DDC_CLK	I/O	20k(H)	V1P8S	CMOS_OD				

2.11 MIPI Camera Serial Interface (CSI) & ISP Interface Signals

Refer Chapter 6, "MIPI-Camera Serial Interface (CSI) and ISP" for more details.

Table 20. MIPI CSI Interface Signals (Sheet 1 of 2)

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
MCSI1_CLKN	I		V1P24S	Off					
MCSI1_CLKP	I		V1P24S	Off					
MCSI1_DN[0:3]	I		V1P24S	Off					
MCSI1_DP[0:3]	I		V1P24S	Off					
MCSI2_CLKN	I		V1P24S	Off					
MCSI2_CLKP	I		V1P24S	Off					
MCSI2_DN[0]	I		V1P24S	Off					
MCSI2_DP[0]	I		V1P24S	Off					

Table 20. MIPI CSI Interface Signals (Sheet 2 of 2)

				Default Buffer State				
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix	
MCSI3_CLKN	I		V1P24S	Off				
MCSI3_CLKP	I		V1P24S	Off				
MCSI_RCOMP	-		V1P24S	Off	High-Z	High-Z		

2.12 Low Power Engine (LPE) for Audio (I²S) Interface Signals

Refer Chapter 7, "Low Power Engine (LPE) for Audio (I²S)" for more details.

Table 21. LPE Interface Signals

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
LPE_I2S[2:0]_CLK	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down			
LPE_I2S[2:0]_FRM	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
LPE_I2S[2:0]_DATAOUT	0	20k(H)	V1P8S	Off	Pull-up	Pull-up			
LPE_I2S[2:0]_DATAIN	I	20k(L)	V1P8S	Off	Pull-down	Pull-down			

2.13 Storage Control Cluster (eMMC, SDIO, SD) Interface Signals

Refer Chapter 8, "Storage Control Cluster (eMMC, SDIO, SD Card)" for more details.

Table 23. Storage Control Cluster (eMMC, SDIO, SD) Interface Signals (Sheet 1 of 2)

				Default Buffer State						
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix			
MMC1_D[7:0]†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up				
MMC1_CMD†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up				
MMC1_CLK†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down				
MMC1_RST#†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down				
MMC1_RCOMP	-	-	V1P8S							
SD2_D[3:0] [†]	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up				
SD2_CMD†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up				

Table 23. Storage Control Cluster (eMMC, SDIO, SD) Interface Signals (Sheet 2 of 2)

					Default Bu	ıffer State	
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix
SD2_CLK†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down	
SD3_D[3:0]†	I/O	20k(H)	VSDIO	Off	Pull-up	Pull-up	
SD3_CMD†	I/O	20k(H)	VSDIO	Off	Pull-up	Pull-up	
SD3_CLK†	I/O	20k(L)	VSDIO	Off	Pull-down	Pull-down	
SD3_PWREN#†	0	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SD3_CD#†	I	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SD3_1P8EN†	0	20k(L)	V1P8S	Off	Pull-down	Pull-down	
SD3_RCOMP	-	-	VSDIO				

NOTES:

- 1. All signals with the "+" symbol are muxed and may not be available without configuration.
- 2. VSDIO voltage selection is controlled by SD3_1P8EN. 3.3V is default due to pull-down. VSDIO can be either 1.8 or 3.3 V when these VSDIO referenced signals are configured to be GPIO's to meet different platform requirements.

2.14 SIO - High Speed UART Interface Signals

Refer Chapter 12, "Serial IO (SIO) Overview" for more details.

Table 25. High Speed UART Interface Signals

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
SIO_UART1_RXD†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_UART1_TXD†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_UART1_RTS#†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_UART1_CTS#†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_UART2_RXD†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_UART2_TXD†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_UART2_RTS#†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_UART2_CTS#†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			

NOTE: All signals with the "†" symbol are muxed and may not be available without configuration.

2.15 SIO - I²C Interface Signals

Refer Chapter 12, "Serial IO (SIO) Overview" for more details.

Table 27. SIO - I²C Interface Signals

					Default B	uffer State	
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix
SIO_I2C0_DATA†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C0_CLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C1_DATA†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C1_CLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C2_DATA†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C2_CLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C3_DATA†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C3_CLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C4_DATA†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C4_CLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C5_DATA†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C5_CLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C6_DATA†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
SIO_I2C6_CLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
NFC_I2C_DATA†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	
NFC_I2C_CLK†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up	

NOTE: All signals with the "†" symbol are muxed and may not be available without configuration.

2.16 SIO - Serial Peripheral Interface (SPI) Signals

Refer Chapter 12, "Serial IO (SIO) Overview" for more details.

Table 29. SIO - Serial Peripheral Interface (SPI) Signals

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
SIO_SPI_CLK†	I/O	20k(L)	V1P8S	Off	Pull-down	Pull-down			
SIO_SPI_CS#†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_SPI_MOSI†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			
SIO_SPI_MISO†	I/O	20k(H)	V1P8S	Off	Pull-up	Pull-up			

NOTE: All signals with the "†" symbol are muxed and may not be available without configuration.

2.17 PCU - iLB - Real Time Clock (RTC) Interface Signals

Refer Chapter 20, "PCU - iLB - Real Time Clock (RTC)" for more details.

Table 31. PCU - iLB - Real Time Clock (RTC) Interface Signals

				Default Buffer State				
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0		
ILB_RTC_X1	I	-	VRTC	Running	Running	Running		
ILB_RTC_X2	0	-	VRTC	Running	Running	Running		
ILB_RTC_RST#	I	-	VRTC	V_{IH}	V _{IH}	V _{IH}		
ILB_RTC_TEST#	I	-	VRTC	V _{IH}	V _{IH}	V _{IH}		
ILB_RTC_EXTPAD	0	-	VRTC					

2.18 PCU - iLB - Low Pin Count (LPC) Bridge Interface Signals

Refer Chapter 19, "PCU - iLB - Low Pin Count (LPC) Bridge" for more details.

Table 33. PCU - iLB - LPC Bridge Interface Signals

				Default Buffer State					
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix		
ILB_LPC_AD[3:0]†	I/O	20k(H)	VLPC	Off	Pull-up	Running			
ILB_LPC_FRAME#†	I/O	20k(H)	VLPC	Off	V _{OH}	Running			
ILB_LPC_SERIRQ†	I/O	20k(H)	V1P8S	Off	Pull-up	Running			
ILB_LPC_CLKRUN#†	I/O	20k(H)	VLPC	Off	Pull-up	Running			
ILB_LPC_CLK[1:0] [†]	I/O	20k(L)	VLPC	Off	V _{OL}	Running			
LPC_RCOMP	-		VLPC						

NOTE: All signals with the "+" symbol are muxed and may not be available without configuration.

2.19 PCU - Serial Peripheral Interface (SPI) Signals

Refer Chapter 16, "PCU - Serial Peripheral Interface (SPI)" for more details.

Table 35. PCU - Serial Peripheral Interface (SPI) Signals

				Default Buffer State				
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix	
PCU_SPI_CLK	0	-	V1P8A	Pull-up	Pull-up	Running	V _{IL} /V _{OL}	
PCU_SPI_CS[0]#	0	-	V1P8A	Pull-up	Pull-up	Running	V _{IH} /V _{OH}	
PCU_SPI_CS[1]#†	0	20k(H)	V1P8A	Pull-up	Pull-up	Running		
PCU_SPI_MOSI	I/O	20k(H)	V1P8A	Pull-up	Pull-up	Running	V _{IL} /V _{OL}	
PCU_SPI_MISO	I	20k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up	

NOTE: All signals with the "†" symbol are muxed and may not be available without configuration.

2.20 PCU - Power Management Controller (PMC) Interface Signals

Refer Chapter 15, "PCU - Power Management Controller (PMC)" for more details.

Table 37. PCU - Power Management Controller (PMC) Interface Signals

					Default Buff	er State	
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix
PMC_PLTRST#	0	-	V1P8A	Off/V _{OL}	V _{OL} ->V _{OH}	V _{OH}	V _{OH}
PMC_PWRBTN#†	I	20k(H)	V1P8A				
PMC_RSTBTN#	I	20k(H)	V1P8S	Off	Pull-up	Pull-up	Pull-up
PMC_SUSPWRDNACK†	0	-	V1P8A				
PMC_SUS_STAT#†	0	-	V1P8A				
PMC_SUSCLK[0]	0	-	V1P8A	Off/Running	Running	Running	Running
PMC_SUSCLK[3:1] [†]	0	-					
PMC_SLP_S4#	0	-	V1P8A	Off/V _{OL}	V _{OH}	V _{OH}	V _{OH}
PMC_SLP_S0ix#	I/O		V1P8A	Off/V _{OL}	V _{OH}	V _{OH}	V _{OH}
PMC_ACPRESENT	I	20k(L)	V1P8A	Off/High-Z	Pull-down	Pull-down	Pull-down
PMC_BATLOW#	I	20k(H)	V1P8A	Off/Pull-up	Pull-up	Pull-up	Pull-up
PMC_CORE_PWROK	I		VRTC	V _{IL}	V _{IL}	V_{IH}	
PMC_RSMRST#	I		VRTC	V _{IH}	V_{IH}	V _{IH}	

 $\textbf{NOTE:} \ \textbf{All signals with the ``†'' symbol are muxed and may not be available without configuration.$

2.21 JTAG and Debug Interface Signals

Table 39. JTAG and Debug Interface Signals

					Default	Buffer State	
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	S0ix
TAP_TCK	I	2k(L)	V1P8A	Pull-down	Pull-down	Pull-down	Pull-down
TAP_TDI	I	2k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up
TAP_TDO	0	-	V1P8A	Pull-up	Pull-up	Pull-up	Pull-down
TAP_TMS	I	2k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up
TAP_TRST#	I	2k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up
TAP_PRDY#	0	2k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up
TAP_PREQ#	I	2k(H)	V1P8A	Pull-up	Pull-up	Pull-up	Pull-up

2.22 Miscellaneous Signals

Table 41. Miscellaneous Signals and Clocks

				De	fault Buffer St	ate
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0
SVID_DATA	I/O	2k(H)	V1P0S	Off	Pull-up	Pull-up
SVID_CLK	0	2k(H)	V1P0S	Off	Pull-up	Pull-up
SVID_ALERT#	I	2k(H)	V1P0S	Off	Pull-up	Pull-up
PROCHOT#	I/O	2k(H)	V1P0S	Off	Pull-up	Pull-up
ILB_8254_SPKR	0	20k(H)	V1P8S	Off	Pull-up	Pull-up
ILB_NMI	I	20k(H)	V1P8S	Off	Pull-up	Pull-up
PMC_PLT_CLK[5:0] [†]	0	20k(L)	V1P8S	Off	Pull-down	Pull-down
P_RCOMP_P/N	I/O	-			Pull-up/down	Pull-up/down
S_RCOMP_P/N	I/O	-			Pull-up/down	Pull-up/down
GPIO_RCOMP	-	-	V1P8S	Off	Active	Active

2.23 **GPIO Signals**

Most GPIO's are configurable via multiplexors. Refer Chapter 30, "Ballout and Package Information" for configuration options with the interfaces presented in this section.

Table 42. GPIO Signals (Sheet 1 of 5)

				De	fault Buffer St	ate
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0
GPIO_S0_SC[000]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[001] [†]	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[002]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[003]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[004]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[005]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[006]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[007]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[008]†	I/O	20k,L	VAUD	Off	Pull-down	Pull-down
GPIO_S0_SC[009]†	I/O	20k,L	VAUD	Off	Pull-down	Pull-down
GPIO_S0_SC[010]†	I/O	20k,L	VAUD	Off	Pull-down	Pull-down
GPIO_S0_SC[011]†	I/O	20k,L	VAUD	Off	Pull-down	Pull-down
GPIO_S0_SC[012]†	I/O	20k,L	VAUD	Off	Pull-down	Pull-down
GPIO_S0_SC[013]†	I/O	20k,L	VAUD	Off	Pull-down	Pull-down
GPIO_S0_SC[014]†	I/O	20k,L	VAUD	Off	Pull-down	Pull-down
GPIO_S0_SC[015]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[016]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[017]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[018]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[019]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[020]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[021]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[022]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[023]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[024]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[025]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[026]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[027]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[028]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[029]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[030]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[031]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[032]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[033]†	I/O	20k,L	VSDIO	Off	Pull-down	Pull-down

Table 42. GPIO Signals (Sheet 2 of 5)

				Def	fault Buffer St	ate
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0
GPIO_S0_SC[034]†	I/O	20k,H	VSDIO	Off	Pull-up	Pull-up
GPIO_S0_SC[035]†	I/O	20k,H	VSDIO	Off	Pull-up	Pull-up
GPIO_S0_SC[036]†	I/O	20k,H	VSDIO	Off	Pull-up	Pull-up
GPIO_S0_SC[037]†	I/O	20k,H	VSDIO	Off	Pull-up	Pull-up
GPIO_S0_SC[038]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[039]†	I/O	20k,H	VSDIO	Off	Pull-up	Pull-up
GPIO_S0_SC[040]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[041]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[042]†	I/O	20k,H	VLPC	Off	Pull-up	Pull-up
GPIO_S0_SC[043]†	I/O	20k,H	VLPC	Off	Pull-up	Pull-up
GPIO_S0_SC[044]†	I/O	20k,H	VLPC	Off	Pull-up	Pull-up
GPIO_S0_SC[045]†	I/O	20k,H	VLPC	Off	Pull-up	Pull-up
GPIO_S0_SC[046]†	I/O	20k,H	VLPC	Off		
GPIO_S0_SC[047]†	I/O	20k,L	VLPC	Off		
GPIO_S0_SC[048]†	I/O	20k,L	VLPC	Off		
GPIO_S0_SC[049]†	I/O	20k,H	VLPC	Off	Pull-up	Pull-up
GPIO_S0_SC[050]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[051]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[052]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[053]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[054]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[055]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[056]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[057]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[058]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[059]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[060]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[061]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[062]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[063]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[064]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down
GPIO_S0_SC[065]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[066]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[067]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up
GPIO_S0_SC[068]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up

Table 42. GPIO Signals (Sheet 3 of 5)

				Default Buffer State			
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0	
GPIO_S0_SC[069]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S0_SC[070]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-down	
GPIO_S0_SC[071]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[072]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[073]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[074]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[075]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[076]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[077]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[078]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[079]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[080]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[081]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[082]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[083]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[084]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[085]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[086]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[087]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[088]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[089]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[090]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[091]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[092]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[093]†	I/O	20k,H	V1P8S	Off	Pull-up	Pull-up	
GPIO_S0_SC[094]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S0_SC[095]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S0_SC[096]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S0_SC[097]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S0_SC[098]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S0_SC[099]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S0_SC[100]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S0_SC[101]†	I/O	20k,L	V1P8S	Off	Pull-down	Pull-down	
GPIO_S5[00]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up	
GPIO_S5[01]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up	

Table 42. GPIO Signals (Sheet 4 of 5)

				Default Buffer State		
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0
GPIO_S5[02]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[03]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[04]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[05]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[06]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[07]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[08]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[09]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[10]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[11]†	I/O	-	V1P8A	0/1	0	0/1
GPIO_S5[12]†	I/O	-	V1P8A	Т	Т	Т
GPIO_S5[13]†	I/O	-	V1P8A	0	0	0/1
GPIO_S5[14]†	I/O	-	V1P8A	0	0	0/1
GPIO_S5[15]†	I/O	20k,H	V1P8A		Pull-up	Pull-up
GPIO_S5[16]†	I/O	20k,H	V1P8A		Pull-up	Pull-up
GPIO_S5[17]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[18]†	I/O	-	V1P8A	0	0	1
GPIO_S5[19]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[20]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[21]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[22]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[23]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[24]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[25]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[26]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[27]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[28]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[29]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[30]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[31]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[32]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[33]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[34]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[35]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[36]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down

Table 42. GPIO Signals (Sheet 5 of 5)

				Default Buffer State		
Signal Name	Dir	Term	Plat. Power	S4/S5	Reset	Enter S0
GPIO_S5[37]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[38]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[39]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[40]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[41]†	I/O	20k,L	V1P8A	Pull-down	Pull-down	Pull-down
GPIO_S5[42]†	I/O	20k,H	V1P8A	Pull-up	Pull-up	Pull-up
GPIO_S5[43]†	I/O	20k,L	V1P8A	Pull-up	Pull-down	Pull-down

2.24 Power And Ground Pins

Power Rail Ball Name Format: [Function]_[Voltage]_[S-State]{_[Filter]}:

- [Function]: The SoC function associated with the power rail.
 - E.g CORE, USB, ...
- [Voltage]: The nominal voltage associated with the power rail.
 - E.g. 1P05, 3P3, VCC, ...
- [S-State]: The ACPI system state, from S0 to G3, when the this rail is turned off.
- [Filter]: An optional indicator that one or more power rail balls have unique filtering requirements or requirement to be uniquely identified.

Table 43. Power and Ground Pins (Sheet 1 of 2)

Power Rails	Platform Power	Nominal Voltages	First Off State
CORE_V1P05_S4		1.05 V	S4
CORE_VCC_S0iX		Variable	S0iX
CORE_VCC_SENSE		Refer CORE	_VCC_S0iX
CORE_VSS_SENSE		-	
DDI_V1P0_S0iX		1.0 V	S0iX
DRAM_V1P0_S0iX		1.0 V	S0iX
DRAM_V1P24_S0iX_F1		1.24 V	S0iX
DRAM_VDD_S4		1.24 V	S4
GPIO_V1P0_S4		1.0 V	S4
ICLK_V1P24_S4_F1		1.24 V	S4
ICLK_V1P24_S4_F2		1.24 V	S4

Table 43. Power and Ground Pins (Sheet 2 of 2)

Power Rails	Platform Power	Nominal Voltages	First Off State
LPC_V1P8V3P3_S4		1.8/3.3 V	S4
LPE_V1P8_S4		1.8 V	S4
MIPI_V1P24_S4		1.24 V	S4
MIPI_V1P8_S4		1.8 V	S4
PCU_V1P8_G3		1.8 V	G3
PCU_V3P3_G3		3.3 V	G3
PMC_V1P8_G3		1.8 V	G3
PWR_RVD_V1P0		1.0 V	
RTC_VCC		2.0-3.3 V	(normally battery backed)
SD3_V1P8V3P3_S4		1.8/3.3 V	S4
SIO_V1P8_S4		1.8 V	S4
SVID_V1P0_S4		1.0 V	S4
UNCORE_V1P0_G3		1.0 V	G3
UNCORE_V1P0_S0iX		1.0 V	S0iX
UNCORE_V1P0_S4		1.0 V	S4
UNCORE_V1P24_S0iX_F1		1.24 V	S0iX
UNCORE_V1P24_S0iX_F2		1.24 V	S0iX
UNCORE_V1P24_S0iX_F3		1.24 V	S0iX
UNCORE_V1P24_S0iX_F4		1.24 V	S0iX
UNCORE_V1P24_S0iX_F5		1.24 V	S0iX
UNCORE_V1P24_S0iX_F6		1.24 V	S0iX
UNCORE_V1P8_G3		1.8 V	G3
UNCORE_V1P8_S4		1.8 V	S4
UNCORE_VNN_S4		Variable	S4
UNCORE_VNN_SENSE		Refer UNCO	DRE_VNN_S4
USB_HSIC_V1P24_G3	V1P2A	1.20 V	G3
USB_ULPI_V1P8_G3		1.8 V	G3
USB_V1P0_S4		1.0 V	S4
USB_V1P8_G3		1.8 V	G3
USB_V3P3_S0iX		3.3 V	G3
USB_VSSA			-
USB3_V1P0_G3		1.0 V	G3
USB3DEV_V1P0_S4		1.0 V	S4
VSS		-	-
VSSA		-	-

Note:

USB_HSIC_V1P24_G3 pin(s) can be connected to V1P0A platform rail if USB HSIC is not used. MIPI_V1P24_S4 can be grounded if MIPI interfaces (CSI & DSI) aren't used.

2.25 Hardware Straps

All straps are sampled on the rising edge of PMC_CORE_PWROK. Defaults are based on internal termination.

Table 44. Straps

Signal Name	Function	Default	Strap Exit	Strap Description
GPIO_S0_SC[056]	Legacy	1b	PMC_CORE_PWROK de-asserted	Top Swap (A16 Override) 0 = Top address bit is unchanged 1 = Top address bit is inverted
GPIO_S0_SC[063]	Legacy	1b	PMC_CORE_PWROK de-asserted	BIOS Boot Selection 0 = LPC 1 = SPI
GPIO_S0_SC[065]	Legacy	1b	PMC_CORE_PWROK de-asserted	Security Flash Descriptors 0 = Override 1 = Normal Operation
DDI0_DDCDATA	Display	0b	PMC_CORE_PWROK de-asserted	DDI0 Detect 0 = DDI0 not detected 1 = DDI0 detected
DDI1_DDCDATA	Display	0b	PMC_CORE_PWROK de-asserted	DDI1 Detect 0 = DDI1 not detected 1 = DDI1 detected
MDSI_DDCDATA	Display	0b	PMC_CORE_PWROK de-asserted	MIPI DSI Detect 0 = DSI not detected 1 = DSI detected

2.26 Configurable IO: GPIO Muxing

Not all interfaces may be active at the same time. To provide flexibility, some interfaces are muxed with configurable IO balls. An interface's signal is selected by a function number.

Note:

Configurable IO defaults to function 0 at boot. All configurable IO with GPIO's for function 0 default to input at boot.

For Type 4 SoC multiplexed GPIO functions refer Table 45.

For Type 3 SoC multiplexed GPIO functions refer Table 46

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 1 of 13)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[00]	I/O
CDIO CO CC[00]	1		
GPIO_S0_SC[00]	2	RESERVED	
	3		
	0	GPIO_S0_SC[01]	I/O
0010 00 001013	1		
GPIO_S0_SC[01]	2		
	3		
	0	GPIO_S0_SC[02]	I/O
0070 00 00[00]	1		
GPIO_S0_SC[02]	2		
	3		
	0	GPIO_S0_SC[03]	I/O
CD10 C0 CC[02]	1		
GPIO_S0_SC[03]	2		
	3		
	0	GPIO_S0_SC[04]	I/O
CDIO CO CC[04]	1		
GPIO_S0_SC[04]	2		
	3		
	0	GPIO_S0_SC[05]	I/O
CDIO CO CC[0E]	1		
GPIO_S0_SC[05]	2		
	3		
	0	GPIO_S0_SC[06]	I/O
CDIO CO CC[OC]	1		
GPIO_S0_SC[06]	2		
	3		
	0	GPIO_S0_SC[07]	I/O
CD10 C0 CC[07]	1	RESERVED	
GPIO_S0_SC[07]	2		
	3		

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 2 of 13)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[08]	I/O
CDIO CO CC[00]	1	I2S0_CLK	
GPIO_S0_SC[08]	2		
	3		
	0	GPIO_S0_SC[09]	I/O
GPIO_S0_SC[09]	1	I2S0_FRM	
	2		
	3	-	
GPIO_S0_SC[10]	0	GPIO_S0_SC[10]	I/O
	1	I2S0_DATAOUT	
	2		-
	3	-	-
	0	GPIO_SO_SC[11]	I/O
GPIO_S0_SC[11]	1	I2S0_DATAIN	
	2		-
	3	-	-
	0	GPIO_S0_SC[12:13]	I/O
GPIO_S0_SC[12:13]	1	I2S1_CLK, I2S1_FRM	
G[10_30_3C[12.13]	2		
	3	-	-
	0	GPIO_SO_SC[14]	I/O
GPIO_S0_SC[14]	1	I2S1_DATAOUT	
0110_30_30[14]	2		-
	3	-	-
	0	GPIO_SO_SC[15]	I/O
GPIO_S0_SC[15]	1	I2S1_DATAIN	
5.10_50_50[15]	2		
	3	-	-
	0	GPIO_SO_SC[16]	I/O
GPIO_S0_SC[16]	1	MMC1_CLK	
G. 10_30_3C[10]	2	-	-
	3	-	-
	0	GPIO_SO_SC[17]	I/O
GPIO_S0_SC[17]	1	MMC1_D[0]	
5.10_50_50[17]	2		
	3		

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 3 of 13)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[18]	I/O
CDIO CO CC[10]	1	MMC1_D[1]	
GPIO_S0_SC[18]	2		
	3		
	0	GPIO_S0_SC[19]	I/O
SDIO SO SC[10]	1	MMC1_D[2]	
GPIO_S0_SC[19]	2		
	3	-	-
	0	GPIO_S0_SC[20]	I/O
GPIO_S0_SC[20]	1	MMC1_D[3]	
	2		
	3		
	0	GPIO_S0_SC[21]	I/O
GPIO_S0_SC[21]	1	MMC1_D[4]	
GP10_50_5C[21]	2		
	3		
	0	GPIO_S0_SC[22]	I/O
CDIO CO CC[22]	1	MMC1_D[5]	
GPIO_S0_SC[22]	2		
	3		
	0	GPIO_S0_SC[23]	I/O
CDIO CO CC[33]	1	MMC1_D[6]	
GPIO_S0_SC[23]	2		
	3		
	0	GPIO_S0_SC[24]	I/O
CDIO SO SC[24]	1	MMC1_D[7]	
GPIO_S0_SC[24]	2		
	3		
	0	GPIO_S0_SC[25]	I/O
CDIO CO CCIDEI	1	MMC1_CMD	
GPIO_S0_SC[25]	2		
	3		
	0	GPIO_S0_SC[26]	I/O
CDIO 50 50[36]	1	MMC1_RST#	
GPIO_S0_SC[26]	2		
	3		

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 4 of 13)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[27]	I/O
CDIO CO CC[27]	1	SD2_CLK	
GPIO_S0_SC[27]	2		
	3		
	0	GPIO_S0_SC[28]	I/O
CD10 C0 CC1201	1	SD2_D[0]	
GPIO_S0_SC[28]	2		
	3		
	0	GPIO_S0_SC[29]	I/O
CDIO CO CC(201	1	SD2_D[1]	
GPIO_S0_SC[29]	2		
	3		
	0	GPIO_S0_SC[30]	I/O
GPIO_S0_SC[30]	1	SD2_D[2]	
	2		
	3		
	0	GPIO_S0_SC[31]	I/O
CDIO CO CC[21]	1	SD2_D[3]_CD#	
GPIO_S0_SC[31]	2		
	3		
	0	GPIO_S0_SC[32]	I/O
GPIO_S0_SC[32]	1	SD2_CMD	
GF10_30_3C[32]	2		
	3		
	0	GPIO_S0_SC[33]	I/O
CDIO EO EC[33]	1	SD3_CLK	
GPIO_S0_SC[33]	2		
	3		
	0	GPIO_S0_SC[34]	I/O
CDIO CO CC[24]	1	SD3_D[0]	
GPIO_S0_SC[34]	2		
	3		
	0	GPIO_S0_SC[35]	I/O
CDIO CO CC[3E]	1	SD3_D[1]	
GPIO_S0_SC[35]	2		
	3		

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 5 of 13)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[36]	I/O
CDIO CO CC[26]	1	SD3_D[2]	
GPIO_S0_SC[36]	2		
	3		
	0	GPIO_S0_SC[37]	I/O
GPIO_S0_SC[37]	1	SD3_D[3]	
	2		
	3		
	0	GPIO_S0_SC[38]	I/O
GPIO_S0_SC[38]	1	SD3_CD#	
	2		
	3		
	0	GPIO_S0_SC[39]	I/O
GPIO_S0_SC[39]	1	SD3_CMD	
GPIO_30_3C[39]	2		
	3		
GPIO_S0_SC[40]	0	GPIO_S0_SC[40]	I/O
	1	SD3_1P8EN	
GF10_30_3C[40]	2		
	3		
	0	GPIO_S0_SC[41]	I/O
GPIO_S0_SC[41]	1	SD3_PWREN#	
GF10_30_3C[41]	2		
	3		
	0	GPIO_S0_SC[42:45]	I/O
GPIO_S0_SC[42:45]	1	ILB_LPC_AD[0:3]	
GF10_30_3C[42.43]	2		
	3		
	0	GPIO_S0_SC[46]	I/O
GPIO_S0_SC[46]	1	ILB_LPC_FRAME#	
GPIO_50_5C[46] -	2		
	3		
	0	GPIO_S0_SC[47:48]	I/O
GPIO_S0_SC[47:48]	1	ILB_LPC_CLK[0:1]	
0110_30_30[47.40]	2		
	3		

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 6 of 13)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[49]	I/O
CDIO SO SC[40]	1	ILB_LPC_CLKRUN#	
GPIO_S0_SC[49]	2		
	3		
	0	GPIO_S0_SC[50]	I/O
CDIO CO CCIEO	1	ILB_LPC_SERIRQ	
GPIO_S0_SC[50]	2		
	3		
	0	GPIO_S0_SC[51]	I/O
CDIO CO CCIE11	1		
GPIO_S0_SC[51]	2		
	3		
	0	GPIO_S0_SC[52]	I/O
GPIO_S0_SC[52]	1		
	2		
	3		
	0	GPIO_S0_SC[53]	I/O
CDIO CO CCIESI	1		
GPIO_S0_SC[53]	2		
	3		
	0	GPIO_S0_SC[54]	I/O
CDIO CO CC[[4]	1	ILB_8254_SPKR	
GPIO_S0_SC[54]	2	RESERVED	
	3		
	0	GPIO_S0_SC[55]	I/O
CDIO CO CCIEFI	1	RESERVED	
GPIO_S0_SC[55]	2		
	3		
	0	GPIO_S0_SC[56]	I/O
CDIO CO CCITCI	1	RESERVED	
GPIO_S0_SC[56]	2		
	3		
	0	GPIO_S0_SC[57]	I/O
CDIO CO CC1571	1	PCU_UART_TXD	
GPIO_S0_SC[57]	2		
	3		

Datasheet Datasheet

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 7 of 13)

GPIO Name	F	Function Signal Name	Dir
GPIO_S0_SC[58]	0	GPIO_S0_SC[58]	I/O
	1	RESERVED	
	2		
	3		
	0	GPIO_S0_SC[59]	I/O
CDIO CO CC[E0]	1	RESERVED	
GPIO_S0_SC[59]	2		
	3		
	0	GPIO_S0_SC[60]	I/O
CDIO CO CC[60]	1	RESERVED	
GPIO_S0_SC[60]	2		
	3		
	0	GPIO_S0_SC[61]	I/O
GPIO_S0_SC[61]	1	PCU_UART_RXD	I/O
GP10_30_3C[01]	2	-	-
	3	-	-
	0	GPIO_S0_SC[62]	I/O
GPIO_S0_SC[62]	1	LPE_I2S2_CLK	I/O
GF10_30_3C[02]	2		-
	3	-	-
	0	GPIO_S0_SC[63]	I/O
GPIO_S0_SC[63]	1	LPE_I2S2_FRM	I/O
GP10_30_3C[03]	2	RESERVED	-
	3	-	-
	0	GPIO_S0_SC[64]	I/O
GPIO_S0_SC[64]	1	LPE_I2S2_DATAIN	I/O
GP10_30_3C[04]	2	-	-
	3	-	-
	0	GPIO_S0_SC[65]	I/O
CDIO SO SC[6E]	1	LPE_I2S2_DATAOUT	I/O
GPIO_S0_SC[65]	2	-	-
	3	-	-
	0	GPIO_S0_SC[66]	I/O
CDIO CO CC[66]	1	SIO_SPI_CS#	I/O
GPIO_S0_SC[66]	2	-	-
	3	-	-

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 8 of 13)

GPIO Name	F	Function Signal Name	Dir
CDVO CO CC[C7]	0	GPIO_S0_SC[67]	I
	1	SIO_SPI_MISO	I/O
GPIO_S0_SC[67]	2	-	-
	3	-	-
	0	GPIO_S0_SC[68]	I/O
CDIO CO CC[69]	1	SIO_SPI_MOSI	I/O
GPIO_S0_SC[68]	2	-	-
	3	-	-
	0	GPIO_S0_SC[69]	I/O
CDIO CO CC[60]	1	SIO_SPI_CLK	
GPIO_S0_SC[69]	2	-	-
	3	-	-
	0	GPIO_S0_SC[70]	I/O
CDIO CO CC[70]	1	SIO_UART1_RXD	
GPIO_S0_SC[70]	2	RESERVED	-
	3	-	-
	0	GPIO_S0_SC[71]	I/O
GPIO_S0_SC[71]	1	SIO_UART1_TXD	
GF10_30_3C[71]	2	RESERVED	-
	3	-	-
	0	GPIO_S0_SC[72]	I/O
GPIO_S0_SC[72]	1	SIO_UART1_RTS#	
GP10_30_3C[72]	2		
	3		
	0	GPIO_S0_SC[73]	I/O
GPIO_S0_SC[73]	1	SIO_UART1_CTS#	
GP10_30_3C[73]	2		
	3		
	0	GPIO_S0_SC[74]	I/O
GPIO_S0_SC[74]	1	SIO_UART2_RXD	
0110_30_30[/4]	2		
	3		
	0	GPIO_S0_SC[75]	I/O
GPIO_S0_SC[75]	1	SIO_UART2_TXD	
GL10_20_2C[\2]	2		
	3		

Datasheet Datasheet

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 9 of 13)

GPIO Name	F	Function Signal Name	Dir
GPIO_S0_SC[76]	0	GPIO_S0_SC[76]	I/O
	1	SIO_UART2_RTS#	
	2		
	3		
	0	GPIO_S0_SC[77]	I/O
CDIO CO CC[77]	1	SIO_UART2_CTS#	
GPIO_S0_SC[77]	2		
	3		
	0	GPIO_S0_SC[78]	I/O
CDIO SO SC[70]	1	SIO_I2C0_DATA	
GPIO_S0_SC[78]	2		
	3		
	0	GPIO_S0_SC[79]	I/O
GPIO_S0_SC[79]	1	SIO_I2C0_CLK	
GP10_30_3C[79]	2		
	3		
	0	GPIO_S0_SC[80]	I/O
GPIO_S0_SC[80]	1	SIO_I2C1_DATA	
GF10_30_3C[60]	2		
	3		
	0	GPIO_S0_SC[81]	I/O
GPIO_S0_SC[81]	1	SIO_I2C1_CLK	
GF10_30_3C[01]	2		
	3		
	0	GPIO_S0_SC[82]	I/O
GPIO_S0_SC[82]	1	SIO_I2C2_DATA	
GF10_30_3C[02]	2		
	3		
	0	GPIO_S0_SC[83]	I/O
GPIO_S0_SC[83]	1	SIO_I2C2_CLK	
G. 10_30_3C[03]	2		
	3		
	0	GPIO_S0_SC[84]	I/O
GPIO_S0_SC[84]	1	SIO_I2C3_DATA	
G. 10_30_3C[04]	2		
	3		

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 10 of 13)

GPIO Name	F	Function Signal Name	Dir
GPIO_S0_SC[85]	0	GPIO_S0_SC[85]	I/O
	1	SIO_I2C3_CLK	
GP10_30_3C[63]	2		
	3		
	0	GPIO_S0_SC[86]	I/O
CDIO CO CC[96]	1	SIO_I2C4_DATA	
GPIO_S0_SC[86]	2		
	3		
	0	GPIO_S0_SC[87]	I/O
CDIO CO CC[07]	1	SIO_I2C4_CLK	
GPIO_S0_SC[87]	2		
	3		
	0	GPIO_S0_SC[88]	I/O
CD10 C0 CC[00]	1	SIO_I2C5_DATA	
GPIO_S0_SC[88]	2		
	3		
	0	GPIO_S0_SC[89]	I/O
CD10 C0 CC[00]	1	SIO_I2C5_CLK	
GPIO_S0_SC[89]	2		
	3		
	0	GPIO_S0_SC[90]	I/O
ODIO GO GO[00]	1	SIO_I2C6_DATA	
GPIO_S0_SC[90]	2	NMI#	
	3		
	0	GPIO_S0_SC[91]	I/O
ODIO GO GO[04]	1	SIO_I2C6_CLK	
GPIO_S0_SC[91]	2		
	3		
	0	NFC_I2C_DATA	I/O
onto co occasi	1	GPIO_S0_SC[92]	
GPIO_S0_SC[92]	2		
	3		
	0	NFC_I2C_CLK	I/O
	1	GPIO_S0_SC[93]	
GPIO_S0_SC[93]	2		
	3		

Datasheet Datasheet

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 11 of 13)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[94]	I/O
CDIO CO CO[04]	1	SIO_PWM[0]	
GPIO_S0_SC[94]	2		
	3		
	0	GPIO_S0_SC[95]	I/O
GPIO_S0_SC[95]	1	SIO_PWM[1]	
GP10_30_3C[93] =	2		
	3		
	0	GPIO_S0_SC[96:101]	I/O
CDIO SO SC[06:101]	1	PMC_PLT_CLK[0:5]	
GPIO_S0_SC[96:101] -	2		
	3		
	0	GPIO_S5[0]	I/O
GPIO_S5[0]	1	-	-
GF10_33[0]	2	-	-
	3	-	-
	0	GPIO_S5[0:3]	I/O
GPIO_S5[1:3]	1	-	-
0110_33[1.3]	2	-	-
	6		-
	0	GPIO_S5[4]	I/O
GPIO_S5[4]	1	-	-
0110_33[4]	2	-	-
	3	-	-
	0	GPIO_S5[5:7]	I/O
GPIO_S5[5:7]	1	PMU_SUSCLK[1:3]	0
0110_33[3.7]	2	-	-
	3	-	-
	0	GPIO_S5[8:10]	I/O
GPIO_S5[8:10]	1	-	-
G. 10_35[0.10]	2	-	-
	3	-	-
	0	PMC_SUSPWRDNACK	0
GPIO_S5[11]	1	GPIO_S5[11]	I/O
[O_55[11]	2	-	-
Γ	3	-	-

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 12 of 13)

GPIO Name	F	Function Signal Name	Dir
CDIO CELLOI	0	PMC_SUSCLK[0]	
	1	GPIO_S5[12]	I/O
GPIO_S5[12]	2	-	-
	3	-	-
	0	PMC_SLP_S0IX#	
GPIO_S5[13]	1	GPIO_S5[13]	I/O
GF10_35[15]	2	-	-
	3	-	-
	0		
CDIO CELLAI	1	GPIO_S5[14]	I/O
GPIO_S5[14]	2	USB_ULPI_RST#	-
	3	-	-
	0		
CDIO CELLEI	1	GPIO_S5[15]	I/O
GPIO_S5[15]	2	-	-
	3	-	-
	0		
CDIO CEL171	1	GPIO_S5[17]	I/O
GPIO_S5[17]	2	-	-
	3	-	-
	0	PMC_SUS_STAT#	
CDIO CEL101	1	GPIO_S5[18]	I/O
GPIO_S5[18]	2	-	-
	3	-	-
	0	USB_OC[0:1]#	-
CDIO CE[10.20]	1	GPIO_S5[19:20]	I/O
GPIO_S5[19:20]	2	-	-
	3	-	-
	0	PCU_SPI_CS[1]#	0
CDIO CEI211	1	GPIO_S5[21]	I/O
GPIO_S5[21]	2	-	-
	3	-	-
	0	GPIO_S5[22:30]	I/O
CDIO CE122-201	1	-	-
GPIO_S5[22:30]	2	-	-
	3	-	-

Datasheet Datasheet

Table 45. Type 4 SoC - Multiplexed GPIO Functions (Sheet 13 of 13)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S5[31]	I/O
GPIO_S5[31]	1	USB_ULPI_CLK	-
GP10_55[51]	2	-	-
	3	-	-
	0	GPIO_S5[32:39]	I/O
CDIO CE122.201	1	USB_ULPI_DATA[0:7]	-
GPIO_S5[32:39]	2	-	-
	3	-	-
	0	GPIO_S5[40]	I/O
CDIO CELADI	1	USB_ULPI_DIR	-
GPIO_S5[40]	2	-	-
	3	-	-
	0	GPIO_S5[41]	I/O
CDIO CELA11	1	USB_ULPI_NXT	-
GPIO_S5[41]	2	-	-
	3	-	-
	0	GPIO_S5[42]	I/O
CDIO CELADI	1	USB_ULPI_STP	-
GPIO_S5[42]	2	-	-
	3	-	-
	0	GPIO_S5[43]	I/O
0010 055401	1	USB_ULPI_REFCLK	-
GPIO_S5[43]	2	-	-
	3	-	-

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 1 of 10)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[00]	I/O
GPIO_S0_SC[00]	1		
0110_30_30[00]	2		
	3		
GPIO_SO_SC[01]	0	GPIO_S0_SC[01]	I/O
	1		
	2		
	3		

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 2 of 10)

GPIO Name	F	Function Signal Name	Dir
CDIO	0	GPIO_S0_SC[02]	I/O
	1		
GPIO_S0_SC[02]	2		
	3		
	0	GPIO_S0_SC[03]	I/O
GPIO_S0_SC[03]	1		
GP10_30_3C[03]	2		
	3		
	0	GPIO_S0_SC[07]	I/O
CDIO CO CC[07]	1		
GPIO_S0_SC[07]	2		
	3		
	0	GPIO_S0_SC[08]	I/O
CDIO CO CC[00]	1	I2S0_CLK	
GPIO_S0_SC[08]	2		
	3		
	0	GPIO_S0_SC[09]	I/O
CD10 C0 CC[00]	1	I2S0_FRM	
GPIO_S0_SC[09]	2		
	3	-	
	0	GPIO_S0_SC[10]	I/O
CDIO CO CC[10]	1	I2S0_DATAOUT	
GPIO_S0_SC[10]	2		-
	3	-	-
	0	GPIO_S0_SC[11]	I/O
CDIO CO CC[11]	1	I2S0_DATAIN	
GPIO_S0_SC[11]	2		-
	3	-	-
	0	GPIO_S0_SC[12:13]	I/O
CDIO CO CC[12,12]	1	I2S1_CLK, I2S1_FRM	
GPIO_S0_SC[12:13]	2		
	3	-	-
	0	GPIO_S0_SC[14]	I/O
CDIO CO CC[14]	1	I2S1_DATAOUT	
GPIO_S0_SC[14]	2		-
	3	-	-

Datasheet Datasheet

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 3 of 10)

GPIO Name	F	Function Signal Name	Dir
GPIO_SO_SC[15]	0	GPIO_S0_SC[15]	I/O
	1	I2S1_DATAIN	
	2		
	3	-	-
	0	GPIO_S0_SC[16]	I/O
GPIO_S0_SC[16]	1	MMC1_CLK	
GF10_30_3C[10]	2	-	-
	3	MMC_45_CLK	-
	0	GPIO_S0_SC[17]	I/O
CDIO SO SC[17]	1	MMC1_D[0]	
GPIO_S0_SC[17]	2		
	3	MMC_45_D0	
	0	GPIO_S0_SC[18]	I/O
GPIO_S0_SC[18]	1	MMC1_D[1]	
GP10_30_3C[16]	2		
	3	MMC_45_D1	
	0	GPIO_S0_SC[19]	I/O
GPIO_S0_SC[19]	1	MMC1_D[2]	
GP10_30_3C[19]	2		
	3	MMC_45_D2	-
	0	GPIO_S0_SC[20]	I/O
CDIO EO EC[20]	1	MMC1_D[3]	
GPIO_S0_SC[20]	2		
	3	MMC_45_D3	
	0	GPIO_S0_SC[21]	I/O
GPIO_S0_SC[21]	1	MMC1_D[4]	
GP10_30_3C[21]	2		
	3	MMC_45_D4	
	0	GPIO_S0_SC[22]	I/O
GPIO_S0_SC[22]	1	MMC1_D[5]	
	2		
	3	MMC_45_D5	
	0	GPIO_S0_SC[23]	I/O
CDIO SO SCI221	1	MMC1_D[6]	
GPIO_S0_SC[23]	2		
	3	MMC_45_D6	

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 4 of 10)

GPIO Name	F	Function Signal Name	Dir
GPIO_S0_SC[24]	0	GPIO_S0_SC[24]	I/O
	1	MMC1_D[7]	
	2		
	3	MMC_45_D7	
	0	GPIO_S0_SC[25]	I/O
CDIO CO CC[3E]	1	MMC1_CMD	
GPIO_S0_SC[25]	2		
	3	MMC_45_CMD	
	0	GPIO_S0_SC[26]	I/O
CDIO CO CC[26]	1	MMC1_RST#	
GPIO_S0_SC[26]	2		
	3	MMC_45_RST#	
	0	GPIO_S0_SC[27]	I/O
CDIO CO CC[27]	1	SD2_CLK	
GPIO_S0_SC[27]	2		
	3		
	0	GPIO_S0_SC[28]	I/O
GPIO_S0_SC[28]	1	SD2_D[0]	
GP10_30_3C[28]	2		
	3		
	0	GPIO_S0_SC[29]	I/O
GPIO_S0_SC[29]	1	SD2_D[1]	
GP10_30_3C[29]	2		
	3		
	0	GPIO_S0_SC[30]	I/O
GPIO_S0_SC[30]	1	SD2_D[2]	
GF10_30_3C[30]	2		
	3		
	0	GPIO_S0_SC[31]	I/O
GPIO_S0_SC[31]	1	SD2_D[3]_CD#	
0.10_30_30[31]	2		
	3		
	0	GPIO_S0_SC[32]	I/O
GPIO_S0_SC[32]	1	SD2_CMD	
[0, 10_00_00[02]	2		
	3		

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 5 of 10)

GPIO Name	F	Function Signal Name	Dir
GPIO_S0_SC[33]	0	GPIO_S0_SC[33]	I/O
	1	SD3_CLK	
	2		
	3		
	0	GPIO_S0_SC[34]	I/O
CDIO CO CC[24]	1	SD3_D[0]	
GPIO_S0_SC[34]	2		
	3		
	0	GPIO_S0_SC[35]	I/O
CDIO CO CC(2E)	1	SD3_D[1]	
GPIO_S0_SC[35]	2		
	3		
	0	GPIO_S0_SC[36]	I/O
GPIO_S0_SC[36]	1	SD3_D[2]	
GP10_30_3C[30]	2		
	3		
	0	GPIO_S0_SC[37]	I/O
GPIO_S0_SC[37]	1	SD3_D[3]	
GF10_30_3C[37]	2		
	3		
	0	GPIO_S0_SC[38]	I/O
GPIO_S0_SC[38]	1	SD3_CD#	
GF10_30_3C[30]	2		
	3		
	0	GPIO_S0_SC[39]	I/O
GPIO_S0_SC[39]	1	SD3_CMD	
GF10_30_3C[39]	2		
	3		
	0	GPIO_S0_SC[40]	I/O
GPIO_S0_SC[40]	1	SD3_1P8EN	
G. 10_30_3C[40]	2		
	3		
	0	GPIO_SO_SC[41]	I/O
GPIO_S0_SC[41]	1	SD3_PWREN#	
0.10_30_30[41]	2		
	3		

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 6 of 10)

GPIO Name	F	Function Signal Name	Dir
GPIO_S0_SC[54]	0	GPIO_S0_SC[54]	I/O
	1	ILB_8254_SPKR	
	2		
	3		
GPIO_S0_SC[57]	0	GPIO_S0_SC[57]	I/O
	1	PCU_UART_TXD	
	2		
	3		
GPIO_S0_SC[61]	0	GPIO_S0_SC[61]	I/O
	1	PCU_UART_RXD	I/O
	2	-	-
	3	-	-
CD10 C0 CC[70]	0	GPIO_S0_SC[70]	I/O
	1	SIO_UART1_RXD	
GPIO_S0_SC[70]	2		
	3	-	-
GPIO_S0_SC[71]	0	GPIO_S0_SC[71]	I/O
	1	SIO_UART1_TXD	
	2		
	3	-	-
	0	GPIO_S0_SC[72]	I/O
CDIO SO SC[72]	1	SIO_UART1_RTS#	
GPIO_SO_SC[72]	2		
	3		
GPIO_S0_SC[73]	0	GPIO_S0_SC[73]	I/O
	1	SIO_UART1_CTS#	
	2		
	3		
GPIO_S0_SC[74]	0	GPIO_S0_SC[74]	I/O
	1	SIO_UART2_RXD	
	2		
	3		
GPIO_S0_SC[75]	0	GPIO_S0_SC[75]	I/O
	1	SIO_UART2_TXD	
	2		
	3		

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 7 of 10)

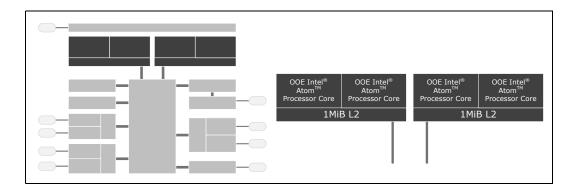
GPIO Name	F	Function Signal Name	Dir
GPIO_S0_SC[76]	0	GPIO_S0_SC[76]	I/O
	1	SIO_UART2_RTS#	
	2		
	3		
GPIO_S0_SC[77]	0	GPIO_S0_SC[77]	I/O
	1	SIO_UART2_CTS#	
	2		
	3		
GPIO_S0_SC[78]	0	GPIO_S0_SC[78]	I/O
	1	SIO_I2C0_DATA	
	2		
	3		
CDIO CO CC1701	0	GPIO_S0_SC[79]	I/O
	1	SIO_I2C0_CLK	
GPIO_S0_SC[79]	2		
	3		
GPIO_S0_SC[80]	0	GPIO_S0_SC[80]	I/O
	1	SIO_I2C1_DATA	
	2		
	3		
GPIO_S0_SC[81]	0	GPIO_S0_SC[81]	I/O
	1	SIO_I2C1_CLK	
	2		
	3		
GPIO_S0_SC[82]	0	GPIO_S0_SC[82]	I/O
	1	SIO_I2C2_DATA	
	2		
	3		
GPIO_S0_SC[83]	0	GPIO_S0_SC[83]	I/O
	1	SIO_I2C2_CLK	
	2		
	3		
GPIO_S0_SC[84]	0	GPIO_S0_SC[84]	I/O
	1	SIO_I2C3_DATA	
	2		
	3		

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 8 of 10)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S0_SC[85]	I/O
GPIO_S0_SC[85]	1	SIO_I2C3_CLK	
GP10_30_3C[63]	2		
	3		
	0	GPIO_S0_SC[86]	I/O
GPIO_S0_SC[86]	1	SIO_I2C4_DATA	
0110_30_30[00]	2		
	3		
	0	GPIO_S0_SC[87]	I/O
GPIO_S0_SC[87]	1	SIO_I2C4_CLK	
GP10_30_3C[67]	2		
	3		
	0	GPIO_S0_SC[94]	I/O
GPIO_S0_SC[94]	1	SIO_PWM[0]	
GP10_30_3C[94]	2		
	3		
	0	GPIO_S0_SC[95]	I/O
GPIO_S0_SC[95]	1	SIO_PWM[1]	
GP10_30_3C[93]	2		
	3		
	0	GPIO_S0_SC[96:100]	I/O
GPIO_S0_SC[96:100]	1	PMC_PLT_CLK[0,1,3,4]	
GF10_30_3C[30.100] =	2		
	3		
	0	GPIO_S5[0]	I/O
GPIO_S5[0]	1	-	-
0110_35[0]	2	-	-
	3	-	-
	0	GPIO_S5[1:3]	I/O
GPIO_S5[1:3]	1	-	-
0, 10_33[1.3]	2	-	-
Ī	6		-
	0	GPIO_S5[4]	I/O
GPIO_S5[4]	1	-	-
0.10_32[4]	2	-	-
Ī	3	-	-

Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 9 of 10)

GPIO Name	F Function Signal Name		Dir
	0	GPIO_S5[5:7]	I/O
CDIO CELE.71	1	PMU_SUSCLK[1:3]	0
GPIO_S5[5:7]	2	-	-
	3	-	-
	0	GPIO_S5[8]	I/O
CDIO CEIOI	1	-	-
GPIO_S5[8]	2	-	-
	3	-	-
	0	PMC_SUSPWRDNACK	0
CDIO CEI111	1	GPIO_S5[11]	I/O
GPIO_S5[11]	2	-	-
	3	-	-
	0	PMC_SUSCLK[0]	
CDIO CEL131	1	GPIO_S5[12]	I/O
GPIO_S5[12]	2	-	-
	3	-	-
	0	PMC_SLP_S0IX#	
CDIO CEL121	1	GPIO_S5[13]	I/O
GPIO_S5[13]	2	-	-
	3	-	-
	0		
CDIO CELLAI	1	GPIO_S5[14]	I/O
GPIO_S5[14]	2	USB_ULPI_RST#	
	3	-	-
	0	PMC_SUS_STAT#	
CDIO CEL101	1	GPIO_S5[18]	I/O
GPIO_S5[18]	2	-	-
	3	-	-
	0	USB_OC[0:1]#	-
CDIO CE[10:20]	1	GPIO_S5[19:20]	I/O
GPIO_S5[19:20]	2	-	-
	3	-	-
	0	PCU_SPI_CS[1]#	0
CDIO CEI213	1	GPIO_S5[21]	I/O
GPIO_S5[21]	2	-	-
	3	-	-


Table 46. Type 3 SoC - Multiplexed GPIO Functions (Sheet 10 of 10)

GPIO Name	F	Function Signal Name	Dir
	0	GPIO_S5[22:30]	I/O
CDIO CE122.201	1	-	-
GPIO_S5[22:30]	2	-	-
	3	-	-
	0	GPIO_S5[31]	I/O
CDIO CEI211	1	USB_ULPI_CLK	-
GPIO_S5[31]	2	-	-
	3	-	-
	0	GPIO_S5[32:39]	I/O
CDIO CE[22,20]	1	USB_ULPI_DATA[0:7]	-
GPIO_S5[32:39]	2	-	-
	3	-	-
	0	GPIO_S5[40]	I/O
GPIO_S5[40]	1	USB_ULPI_DIR	-
GP10_55[40]	2	-	-
	3	-	-
	0	GPIO_S5[41]	I/O
CDIO CELA11	1	USB_ULPI_NXT	-
GPIO_S5[41]	2	-	-
	3	-	-
	0	GPIO_S5[42]	I/O
CDIO CELADI	1	USB_ULPI_STP	-
GPIO_S5[42]	2	-	-
	3	-	-
	0	GPIO_S5[43]	I/O
CDIO CELAZI	1	USB_ULPI_REFCLK	-
GPIO_S5[43]	2	-	-
	3	-	-

3 Processor Core

Up to four out-of-order execution processor cores are supported, each dual core module supports up to 1 MiB of L2 cache.

3.1 Features

- Dual or Quad Out-of-Order Execution (OOE) processor cores
- Primary 32 KiB, 8-way L1 instruction cache and 24 KiB, 6-way L1 write-back data cache
- Cores are grouped into dual-core modules: modules share a 1 MiB, 16-way L2 cache (2 MiB total for Quad Core)
- Intel[®] Streaming SIMD Extensions 4.1 and 4.2 (SSE4.1 and SSE4.2), which include new instructions for media and for fast XML parsing
- Intel[®] 64 architecture
- Support for IA 32-bit
- Support for Intel[®] VT-x
- Supports Intel[®] Advanced Encryption Standard (AES) New instructions (AES-NI)
- Support for Intel® Carry-Less Multiplication Instruction (PCLMULQDQ)
- Support for a Digital Random Number Generator (DRNG)
- Supports C0, C1, C1E, C6C, C6 and C7 states
- Thermal management support via Intel® Thermal Monitor (TM1 & TM2)
- Uses Power Aware Interrupt Routing (PAIR)
- Intel[®] Burst Technology
- Uses 22 nm process technology

Note: Intel[®] Hyper-Threading Technology is not supported.

3.1.1 Intel[®] Virtualization Technology (Intel[®] VT)

Intel[®] Virtualization Technology (Intel[®] VT) makes a single system appear as multiple independent systems to software. This allows multiple, independent operating systems to run simultaneously on a single system. Intel[®] VT comprises technology components to support virtualization of platforms based on Intel architecture microprocessors and chipsets. Intel[®] Virtualization Technology for IA-32, Intel[®] 64 and Intel[®] Architecture (Intel[®] VT-x) added hardware support in the processor to improve the virtualization performance and robustness.

Intel[®] VT-x specifications and functional descriptions are included in the $Intel^{®}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 3B and is available at: http://www.intel.com/products/processor/manuals/index.htm

Other Intel® VT documents can be referenced at: http://www.intel.com/technology/virtualization/index.htm

3.1.1.1 Intel[®] VT-x Objectives

- Robust: VMMs no longer need to use paravirtualization or binary translation. This means that they will be able to run off-the-shelf OSs and applications without any special steps.
- Enhanced: Intel[®] VT enables VMMs to run 64-bit guest operating systems on IA x86 processors.
- More reliable: Due to the hardware support, VMMs can now be smaller, less complex, and more efficient. This improves reliability and availability and reduces the potential for software conflicts.
- More secure: The use of hardware transitions in the VMM strengthens the isolation
 of VMs and further prevents corruption of one VM from affecting others on the
 same system. Intel[®] VT-x provides hardware acceleration for virtualization of IA
 platforms. Virtual Machine Monitor (VMM) can use Intel[®] VT-x features to provide
 improved reliable virtualized platform.

3.1.1.1.1 Intel® VT-x Features

- Extended Page Tables (EPT)
 - EPT is hardware assisted page table physical memory virtualization
 - Support guest VM execution in unpaged protected mode or in real-address mode
 - It eliminates VM exits from guest OS to the VMM for shadow page-table maintenance
- Virtual Processor IDs (VPID)
 - A VM Virtual Processor ID is used to tag processor core hardware structures (such as TLBs) to allow a logic processor to cache information (such as TLBs) for multiple linear address spaces

- This avoids flushes on VM transitions to give a lower-cost VM transition time and an overall reduction in virtualization overhead
- Guest Preemption Timer
 - Mechanism for a VMM to preempt the execution of a guest OS VM after an amount of time specified by the VMM. The VMM sets a timer value before entering a guest.
 - The feature aids VMM developers in flexibility and Quality of Service (QoS) guarantees flexibility in guest VM scheduling and building Quality of Service (QoS) schemes
- Descriptor-Table Exiting
 - Descriptor-table exiting allows a VMM to protect a guest OS from internal (malicious software based) attack by preventing relocation of key system data structures like IDT (interrupt descriptor table), GDT (global descriptor table), LDT (local descriptor table), and TSS (task segment selector)
 - A VMM using this feature can intercept (by a VM exit) attempts to relocate these data structures and prevent them from being tampered by malicious software
- VM Functions
 - A VM function is an operation provided by the processor that can be invoked using the VMFUNC instruction from guest VM without a VM exit
 - A VM function to perform EPTP switching is supported and allows guest VM to load a new value for the EPT pointer, thereby establishing a different EPT paging structure hierarchy

3.1.2 Security and Cryptography Technologies

3.1.2.1 Advanced Encryption Standard New Instructions (AES-NI)

The processor supports Advanced Encryption Standard New Instructions (AES-NI) that are a set of Single Instruction Multiple Data (SIMD) instructions that enable fast and secure data encryption and decryption based on the Advanced Encryption Standard (AES). AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption. AES is broadly accepted as the standard for both government and industry applications, and is widely deployed in various protocols.

AES-NI consists of six Intel® SSE instructions. Four instructions, namely AESENC, AESENCLAST, AESDEC, and AESDELAST facilitate high performance AES encryption and decryption. The other two, AESIMC and AESKEYGENASSIST, support the AES key expansion procedure. Together, these instructions provide a full hardware for support AES, offering security, high performance, and a great deal of flexibility.

3.1.2.2 PCLMULQDQ Instruction

The processor supports the carry-less multiplication instruction, PCLMULQDQ. PCLMULQDQ is a Single Instruction Multiple Data (SIMD) instruction that computes the 128-bit carry-less multiplication of two, 64-bit operands without generating and propagating carries. Carry-less multiplication is an essential processing component of several cryptographic systems and standards. Hence, accelerating carry-less multiplication can significantly contribute to achieving high speed secure computing and communication.

3.1.2.3 Digital Random Number Generator

The processor introduces a software visible digital random number generation mechanism supported by a high quality entropy source. This capability is available to programmers through the new RDRAND instruction. The resultant random number generation capability is designed to comply with existing industry standards (ANSI X9.82 and NIST SP 800-90).

Some possible uses of the new RDRAND instruction include cryptographic key generation as used in a variety of applications including communication, digital signatures, secure storage, etc.

3.1.3 Power Aware Interrupt Routing

PAIR is an improvement in H/W routing of "redirectable" interrupts. Each core power-state is considered in the routing selection to reduce the power or performance impact of interrupts. System BIOS configures the routing algorithm, e.g. fixed-priority, rotating, hash, or PAIR, during setup via non-architectural register. The PAIR algorithm can be biased to optimize for power or performance and the largest gains will be seen in systems with high interrupt rates.

3.1.4 Intel[®] Burst Technology

Note: Intel Burst Technology may not be available on all SKUs.

Intel Burst Technology will increase the ratio of application power to TDP. Thus, thermal solutions and platform cooling that are designed to less than thermal design guidance might experience thermal and performance issues since more applications will tend to run at the maximum power limit for significant periods of time.

Intel Burst Technology is a feature that allows the processor to opportunistically and automatically run faster than its rated operating core and/or render clock frequency when there is sufficient power headroom, and the product is within specified temperature and current limits. The Intel Burst Technology feature is designed to increase performance of both multi-threaded and single-threaded workloads. The processor supports a Burst mode where the processor can use the thermal capacity associated with the package and run at power levels higher than TDP power for short durations. This improves the system responsiveness for short, bursty usage conditions. The burst feature needs to be properly enabled by BIOS for the processor to operate

with maximum performance. Since the burst feature is configurable and dependent on many platform design limits outside of the processor control, the maximum performance cannot be ensured. Burst Mode availability is independent of the number of active cores; however, the Burst Mode frequency is dynamic and dependent on the instantaneous application power load, the number of active cores, user configurable settings, operating environment, and system design.

3.1.4.1 Intel[®] Burst Technology Frequency

The processor's rated frequency assumes that all execution cores are active and are at the sustained thermal design power (TDP). However, under typical operation not all cores are active or at executing a high power workload. Therefore, most applications are consuming less than the TDP at the rated frequency. Intel Burst Technology takes advantage of the available TDP headroom and active cores are able to increase their operating frequency. To determine the highest performance frequency amongst active cores, the processor takes the following into consideration to recalculate burst frequency during runtime:

- The number of cores operating in the C0 state.
- The estimated core current consumption.
- The estimated package prior and present power consumption.
- The package temperature.

Any of these factors can affect the maximum frequency for a given workload. If the power, current, or thermal limit is reached, the processor will automatically reduce the frequency to stay with its TDP limit. Burst processor frequencies are only active if the operating system is requesting the P0 state. For more information on P-states and C-states refer to Chapter 27, "Power Management"

3.2 Platform Identification and CPUID

In addition to verifying the processor signature, the intended processor platform type must be determined to properly target the microcode update. The intended processor platform type is determined by reading bits [52:50] of the IA32_PLATFORM_ID register, (MSR 17h) within the processor. This is a 64-bit register that must be read using the RDMSR instruction. The 3 Platform Id bits, when read as a binary coded decimal (BCD) number, indicate the bit position in the microcode update header's Processor Flags field that is asSoCiated with the installed processor.

Executing the CPUID instruction with EAX=1 will provide the following information.

EAX	Field description
[31:28]	Reserved
[27:20]	Extended Family value
[19:16]	Extended Model value
[15:13]	Reserved
[12]	Processor Type Bit
[11:8]	Family value
[7:4]	Model value
[3:0]	Stepping ID Value

3.3 References

For further details of Intel[®] 64 and IA-32 architectures refer to Intel[®] 64 and IA-32 Architectures Software Developer's Manual Combined Volumes:1, 2A, 2B, 2C, 3A, 3B, and 3C:

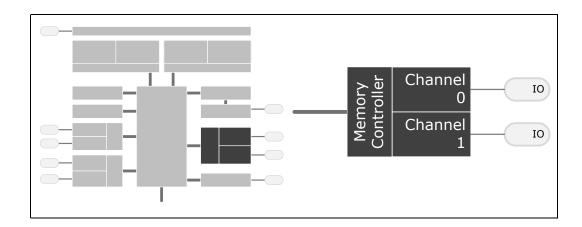
 http://www.intel.com/content/www/µs/en/processors/architectures-softwaredeveloper-manuals.html

For more details on AES-NI refer to:

- Intel ® Performance Primitives (IPP) web page http://software.intel.com/en-us/ intel-ipp/
- White Paper on AES-NI http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/

For more details on using the RDRAND instruction refer to $Intel^{\circledR}$ Advanced Vector Extensions Programming Reference.

ξ



4 System Memory Controller

The system memory controller supports DDR3L and LPDDR3 protocol with up to two 64-bit wide dual rank channels at data rates up to 1333 MT/s.

Note:

The memory data rate is fixed for each SoC. Example, for SoC supporting 1333 MT/s, only memory devices with 1333 MT/s is supported. For single channel use cases, Channel 0 must be used.

4.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- **Type:** The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 47. Memory Channel 0 LPDDR3 Signals (Sheet 1 of 2)

Signal Name	Direction Type	Description
DRAM0_CKP[2,0]	0	SDRAM Differential Clock:
DRAM0_CKN[2,0]	LPDDR3	The differential clock pair is used to latch the command into DRAM. Pair [0] corresponds to lower 32 bits on DRAM side, and Pair [2] corresponds to upper 32 bits on DRAM side.
DRAM0_CS[2,0]	O LPDDR3	Chip Select: (1 per Rank). Used to qualify the command on the command bus for a particular rank.
DRAM0_ODT[2,0]	O LPDDR3	On Die Termination: ODT signals going to DRAM.
DRAM0_CKE[3:0]	O LPDDR3	Clock Enable: (power management) It is used during DRAM power up/power down and Self refresh. Note: LPDDR3 uses DRAM0_CKE[0,1] for one rank, and DRAM0_CKE[2,3] for the other rank.
DRAM0_CA[9:0]	O LPDDR3	Command Address Bus: These signals are used to define the command and address being accessed for the memory.
DRAM0_DQ[63:0]	I/O LPDDR3	Data Lines. Data signal interface to the DRAM data bus
DRAM0_DM[7:0]	O LPDDR3	Data Mask. DM is an output mask signal for write data. Output data is masked when DM is sampled HIGH coincident with that output data during a Write access. DM is sampled on both edges of DQS.
DRAMO_DQSP[7:0] DRAMO_DQSN[7:0]	I/O LPDDR3	Data Strobes: DRAMO_DQSP[7:0] and its complement signal group make up a differential strobe pair. The data is captured at the crossing point of DRAMO_DQSP[7:0] and its DRAMO_DQSN[7:0] during read and write transactions. For Read, the Strobe crossover and data are edge aligned, whereas in the Write command, the strobe crossing is in the centre of the data window.
DRAM_RCOMP[2]	O Analog	System Memory Impedance Compensation: This signal needs to be terminated to VSS on board.
DRAM_RCOMP[1]	O Analog	System Memory Impedance Compensation: This signal needs to be terminated to VSS on board.
DRAM_RCOMP[0]	O Analog	System Memory Impedance Compensation: This signal needs to be terminated to VSS on board.

Table 47. Memory Channel 0 LPDDR3 Signals (Sheet 2 of 2)

Signal Name	Direction Type	Description
DRAM_VREF	I Analog	DRAM interface Reference Voltage
DRAM_CORE_PWROK	I Asynchro nous CMOS	This signal indicates the status of the DRAM Core power supply.
DRAM_VDD_S4_PWROK	I Asynchro nous CMOS	Power OK: Asserted once the VRM is settled. Used primarily in the DRAM PHY to determine S4

Table 48. Memory Channel 1 LPDDR3 Signals

Signal Name	Direction Type	Description
DRAM1_CKP[2,0] DRAM1_CKN[2,0]	O LPDDR3	SDRAM and inverted Differential Clock: The differential clock pair is used to latch the command into DRAM. Pair [0] corresponds to lower 32 bits on DRAM side, and Pair [2] corresponds to upper 32 bits on DRAM side.
DRAM1_CS[2,0]#	O LPDDR3	Chip Select: (1 per Rank). Used to qualify the command on the command bus for a particular rank.
DRAM0_ODT[2,0]	O LPDDR3	On Die Termination: ODT signals going to DRAM.
DRAM1_CKE[3:0]	O LPDDR3	Clock Enable: (power management) It is used during DRAM power up/power down and Self refresh. Note: LPDDR3 uses DRAM1_CKE[0,1] for one rank, and DRAM1_CKE[2,3] for the other rank.
DRAM1_CA[9:0]	O LPDDR3	Command Address Bus: These signals are used to define the command and address being accessed for the memory.
DRAM1_DQ[63:0]	I/O LPDDR3	Data Lines. Data signal interface to the DRAM data bus.
DRAM1_DM[7:0]	O LPDDR3	Data Mask. DM is an output mask signal for write data. Output data is masked when DM is sampled HIGH coincident with that output data during a Write access. DM is sampled on both edges of DQS.
DRAM1_DQSP[7:0] DRAM1_DQSN[7:0]	I/O LPDDR3	Data Strobes: DRAM1_DQSP[7:0] and its complement signal group make up a differential strobe pair. The data is captured at the crossing point of DRAM1_DQSP[7:0] and its DRAM1_DQSN[7:0] during read and write transactions. For Read, the Strobe crossover and data are edge aligned, whereas in the Write command, the strobe crossing is in the centre of the data window.

Table 49. Memory Channel 0 DDR3L Signals (Sheet 1 of 2)

Signal Name	Direction Type	Description	
DRAMO_CKP[0] DRAMO_CKN[0]	O DDR3	SDRAM and inverted Differential Clock: (1 pair per Rank) The differential clock pair is used to latch the command into DRAM. Each pair corresponds to one rank on DRAM side.	
DRAMO_CS[0]#	O DDR3	Chip Select: (1 per Rank). Used to qualify the command on the command bus for a particular rank.	
DRAMO_CKE[1,0]	O DDR3	Clock Enable: (power management) It is used during DRAM power up/power down and Self refresh. Note: DDR3L-RS uses only DRAMO_CKE[2,0]. DRAMO_CKE[1,3] are not being used for DDR3L-RS.	
DRAM0_MA[14:0]	O DDR3	Memory Address: Memory address bus for writing data to memory and reading data from memory. These signals follow common clock protocol w.r.t. DRAMO_CKN, DRAMO_CKP pairs	
DRAM0_BS[2:0]	O DDR3	Bank Select: These signals define which banks are selected within each DRAM rank	
DRAMO_RAS#	O DDR3	Row Address Select: Used with DRAM0_CAS# and DRAM0_WE# (along with DRAM0_CS#) to define the DRAM Commands	
DRAMO_CAS#	O DDR3	Column Address Select: Used with DRAM0_RAS# and DRAM0_WE# (along with DRAM0_CS#) to define the SRAM Commands	
DRAMO_WE#	O DDR3	Write Enable Control Signal: Used with DRAMO_WE# and DRAMO_CAS# (along with control signal, DRAMO_CS#) to define the DRAM Commands.	
DRAM0_DQ[63:0]	I/O DDR3	Data Lines: Data signal interface to the DRAM data bus	
DRAM0_DM[7:0]	O DDR3	Data Mask: DM is an output mask signal for write data. Output data is masked when DM is sampled HIGH coincident with that output data during a Write access. DM is sampled on both edges of DQS.	
DRAMO_DQSP[7:0] DRAMO_DQSN[7:0]	I/O DDR3	 Data Strobes: The data is captured at the crossing point of each 'P' and its compliment 'N' during read an write transactions. For reads, the strobe crossover and data are edge aligned, whereas in the Write command, the strobe crossing is in the centre of the data window. 	
DRAMO_ODT[0]	O DDR3	On Die Termination: ODT signal going to DRAM in order to turn ON the DRAM ODT during Write.	
DRAM_RCOMP[2]	O Analog	Resistor Compensation: This signal needs to be terminated to VSS on board. This external resistor termination scheme is used for Resistor compensation of DRAM ODT strength.	

Table 49. Memory Channel 0 DDR3L Signals (Sheet 2 of 2)

Signal Name	Direction Type	Description	
DRAM_RCOMP[1]	O Analog	Resistor Compensation: This signal needs to be terminated to VSS on board. This external resistor termination scheme is used for Resistor compensation of DQ buffers	
DRAM_RCOMP[0]	O Analog	Resistor Compensation: This signal needs to be terminated to VSS on board. This external resistor termination scheme is used for Resistor compensation of CMD buffers.	
DRAM_VREF	I Analog	Reference Voltage: DRAM interface Reference Voltage	
DRAM_CORE_PWROK	I Asynchro nous CMOS	Core Power OK: This signal indicates the status of the DRAM Core power supply (power on in S0).	
DRAM_VDD_S4_PWR OK	I Asynchro nous CMOS	VDD Power OK: Asserted once the VRM is settled. Used primarily in the DRAM PHY to determine S3 state.	
DRAMO_DRAMRST#	0	DRAM Reset: This signal is used to reset DRAM devices.	
ICLK_DRAM_TERM [1:0]	I/O	Pull-down to VSS through an 100kOhm 1% resistor.	

4.2 Features

4.2.1 System Memory Technology Supported

The system memory controller supports the following DDR3L and LPDDR3 DRAM technologies, Data Transfer Rates and other features:

- DDR3L Data Transfer Rates (Fixed per SKU): 1333MT/s (10.6 GB/s per channel)
- DDR3L SDRAM's (1.35 V DRAM interface I/Os, including DDR3L-RS)
- LPDDR3 Data Transfer Rates: 1066MT/s (8.5 GB/s per channel)
- LPDDR3 SDRAM's (1.24 V DRAM VDDQ)
- LPDDR3 DRAM Device Technology
 - x64, 253 ball LPDDR3 DRAM package.
 - 8 GB (1 rank per channel), 16 GB (2 rank per channel) package density.
 - Standard 4 GB and 8 GB, x32b DRAM technologies and addressing.
- DDR3L-RS DRAM Device Technology
 - Standard 4 GB technologies and addressing.
 - Read latency 5, 6, 7, 8, 9, 10, 11

- Write latency 5, 6, 7, 8
- Supports Trunk Clock Gating
- Supports channel 0 only for single channel configuration
- Supports early SR exit
- Supports slow power down
- Supports CA tri-state when not driving a valid command.
- Supports LPDDR3 configurations

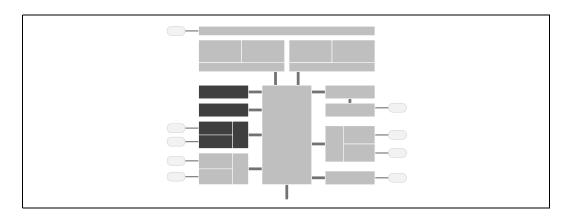
Table 50. Supported LPDDR3 Configurations

Channels	Technology	Technology Details	Max System Capacity	Bandwidth (GB/s)
2 x 64	LPDDR3-1066	Max 2 packages, x64 package width, 8 GB each package, 1 Rank/Channel	2GB	17.1
2 x 64	LPDDR3-1066	Max 2 packages, x64 package width, 16 GB each package, 2 Ranks/Channel	4GB	17.1

Table 51. Supported DDR3L DRAM Devices

DRAM Density	Data Width	Banks	Bank Address	Row Address	Column Address	Page Size
4 GB	x16	8	BA[2:0]	A[14:0]	A[9:0]	2 KB

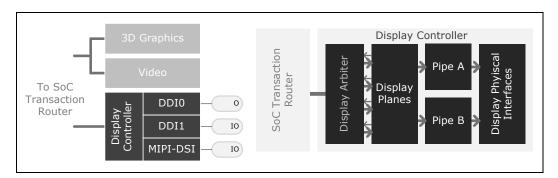
Table 52. Supported DDR3L-RS Memory Size Per Rank


Memory Size/ Rank	DRAM Chips/ Rank	DRAM Chip Density	DRAM Chip Data Width	Page Size @ 64-bit Data Bus
2 GB	4	4 GB	x16	8KB = 2KB * 4 chips

§

5 Graphics, Video and Display

This section provides an overview of Graphics, Video and Display features of the SoC.


5.1 Features

The key features of the individual blocks are as follows:

- Refreshed seventh generation Intel graphics core with four Execution Units (EUs)
 - 3D graphics hardware acceleration including support for DirectX*11, OCL 1.2, OGL ES Halti/2.0/1.1, OGL 3.2
 - Video decode hardware acceleration including support for H.264, MPEG2, MVC, VC-1, WMV9 and VP8 formats
 - Video encode hardware acceleration including support for H.264, MPEG2 and MVC formats
 - Display controller, incorporating the display planes, pipes and physical interfaces
 - Four planes available per pipe 1x Primary, 2x Video Sprite & 1x Cursor
 - Two multi-purpose Digital Display Interface (DDI) PHYs implementing HDMI,
 DVI, DisplayPort (DP) or Embedded DisplayPort (eDP) support
 - Two dedicated digital Display Serial Interface PHYs implementing MIPI-DSI support

5.2 SoC Graphics Display

The Processor Graphics controller display pipe can be broken down into three components:

- Display Planes
- Display Pipes
- Display Physical Interfaces

A display plane is a single displayed surface in memory and contains one image (desktop, cursor, overlay). It is the portion of the display hardware logic that defines the format and location of a rectangular region of memory that can be displayed on a display output device and delivers that data to a display pipe. This is clocked by the Core Display Clock.

5.2.1 Primary Planes A and B

Planes A and B are the main display planes and are associated with Pipes A and B respectively. Each plane supports per-pixel alpha blending.

5.2.2 Video Sprite Planes A, B, C and D

Video Sprite Planes A, B, C & D are planes optimized for video decode. Planes A and B are associated with Pipe A and Planes C and D are associated with Pipe B.

5.2.3 Cursors A and B

Cursors A and B are small, fixed-sized planes dedicated for mouse cursor acceleration, and are associated with Planes A and B respectively.

5.3 Display Pipes

The display pipe blends and synchronizes pixel data received from one or more display planes and adds the timing of the display output device upon which the image is displayed.

The display pipes A and B operate independently of each other at the rate of one pixel per clock. They can attach to any of the display interfaces.

5.4 Display Physical Interfaces

The display physical interfaces consist of output logic and pins that transmit the display data to the associated encoding logic and send the data to the display device. These interfaces are digital (MIPI-DSI, DisplayPort*, Embedded DisplayPort*, DVI and HDMI*) interfaces.

5.4.1 Digital Display Interfaces

5.4.1.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 53. Display Physical Interfaces Signal Names (Sheet 1 of 2)

Signal Name	Direction	Description	
		HDMI / DVI	DP / eDP
DDI[1,0]_TXP[0]	0	Ports 1,0: Transmit Signals	
DDI[1,0]_TXP[1]		TMDS[1,0]_DATAP[2]	DP[1,0]_MAINP[0]
DDI[1,0]_TXP[2]		TMDS[1,0]_DATAP[1]	DP[1,0]_MAINP[1]
DDI[1,0]_TXP[3]		TMDS[1,0]_DATAP[0]	DP[1,0]_MAINP[2]
		TMDS[1,0]_CLKP	DP[1,0]_MAINP[3]
DDI[1,0]_TXN[0]	0	Ports 1,0: Transmit Complement Signals	
DDI[1,0]_TXN[1]		TMDS[1,0]_DATAN[2]	DP[1,0]_MAINN[0]
DDI[1,0]_TXN[2]		TMDS[1,0]_DATAN[1]	DP[1,0]_MAINN[1]
DDI[1,0]_TXN[3]		TMDS[1,0]_DATAN[0]	DP[1,0]_MAINN[2]
		TMDS[1,0]_CLKN	DP[1,0]_MAINN[3]
DDI[1,0]_AUXP	I/O	Ports 1,0: Display Port Auxiliary Channel	
		Unused	DP[1,0]_AUXP
DDI[1,0]_AUXN	I/O	Ports 1,0: Display Port Auxiliary Channel Complement	
		Unused	DP[1,0]_AUXN
DDI[1,0]_HPD	I	Ports 1,0: Hot Plug Detect	
		TMDS[1,0]_HPD	DP[1,0]_HPD

Table 53. Display Physical Interfaces Signal Names (Sheet 2 of 2)

Signal Name	Direction	Description		
		HDMI / DVI	DP / eDP	
DDI[1,0]_DDCCLK	I/O	Ports 1,0: DDC Clock		
		TMDS[1,0]_DDCCLK	Unused	
DDI[1,0]_DDCDATA	I/O	Ports 1,0: DDC Data		
		TMDS[1,0]_DDCDATA	DP[1,0]_EN - Port 0 Enable Strap	
DDI[1,0]_BKLTCTL	0	Ports 1,0: Panel Backlight Brightness Control		
		HDMI / DVI / DP	eDP Only	
		Unused	EDP[1,0]_BKLTCTL	
DDI[1,0]_BKLTEN	0	Ports 1,0: Panel Backlight Enable		
		HDMI / DVI / DP	eDP Only	
		Unused	EDP[1,0]_BKLTEN	
DDI[1,0]_VDDEN	0	Ports 1,0: Panel Power Enable		
		HDMI / DVI / DP	eDP Only	
		Unused	EDP[1,0]_VDDEN	
DDI_RCOMP_P/N	I/O	DDI RCOMP This signal is used for pre-driver slew rate compensation. An external precision resistor of 402 Ω ±1% should be connected between DDI_RCOMP_P and DDI_RCOMP_N.		

Table 54. Display Physical Interfaces Signal Names (2 of 2)

Signal names	Direction Type	Description
MDSI_A_CLKP	0	MIPI Clock output for pipe A
MDSI_A_CLKN	0	MIPI Clock complement output for pipe A
MDSI_A_DP[3:0]	I/O	MIPI Data Lane 3:0 for Pipe A
MDSI_A_DN[3:0]	I/O	MIPI Data Lane 3:0 complement for Pipe A
MDSI_C_CLKP	0	MIPI Clock output for pipe C
MDSI_C_CLKN	0	MIPI Clock complement output for pipe C
MDSI_C_DP[3:0]	I/O	MIPI Data Lane 3:0 for Pipe C
MDSI_C_DN[3:0]	I/O	MIPI Data Lane 3:0 complement for Pipe C
MDSI_A_TE	I/O	Tearing Effect Signal from x4 Pipe A display
MDSI_C_TE	I	Tearing Effect Signal from x4 Pipe C display

Table 54. Display Physical Interfaces Signal Names (2 of 2)

Signal names	Direction Type	Description
MDSI_DDCDATA	I/O	DDC Data
MDSI_DDCCLK	I/O	DDC Clock
MDSI_RCOMP	I/O	MDSI_RCOMP: This is for pre-driver slew rate compensation for the MIPI DSI Interface. An external precision resistor of 150 Ω ±1% should be connected from this pin to ground.

5.4.1.2 Features

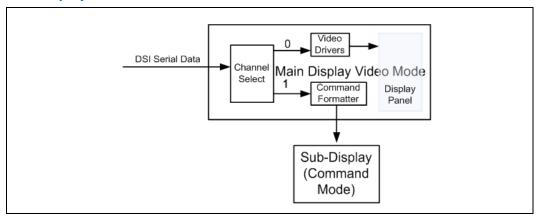
5.4.1.2.1 MIPI-DSI

Each interface supports display resolution up to $1920 \times 1080p @ 60 \text{ Hz}$ with 24b per pixel.

Interface supports maximum of 1 GBps per lane.

Full Frame Buffer Panel

The display controller supports full frame buffer display (also called command-mode display) with optimizations for both SoC power consumption and system power consumption. Full frame buffer panel does not need to be refreshed regularly by a frame buffer in system memory so the path between panel and system memory can be power-managed as much as possible until a new request occurs to update one or more planes that are active in the display pipe.


Sub-Display Support

The display controller supports a sub-display panel that uses a different virtual channel and shares the same interface with the main panel. The pixel data for this sub-display can come from a direct system memory read or it can come from the output at the pipe as described. Sub-display allows, for example, the pixel stream to be updated more frequently or presented in a format and/or resolution that would require software to convert or scale the panel resolution.

One example usage of sub-display is as a view finder for camera. The camera interface unit may output images in a format and resolution that are not read by the sub-display itself or must be blended with camera application graphics.

Figure 5. Sub-Display Connection

Partial Display Mode Support

The display controller supports a partial display mode that utilizes the MIPI command set to transition the panel from normal mode to partial display mode, so a small part of the display panel can be kept active for pixel data. The same panel can switch from full screen mode to a sub-display mode with a handful of scan lines to show time, date, signal strength indicator, etc., to save power for the host processor and display panel.

There are two scenarios:

- Type 1 display panel—both full display and partial display operates in command mode.
- Type 2 display panel—full display (normal mode) operate in video mode; partial
 display operates in command mode. This requires the host processor and display
 panel to be in sync in transition from normal mode to partial mode after 2 frames
 from the enter_partial_mode command.

The software driver must implement most of the protocols of transition and send the correct commands to the display panel to start the transition. The software driver must program the display controller to select the buffer for partial display (display pipe output or system memory) and follow the protocol to be in sync with the display panel.

When the display transitions from partial mode to normal mode, it is recommended to turn the display off to avoid tearing effect as in a flow chart in DCS specification.

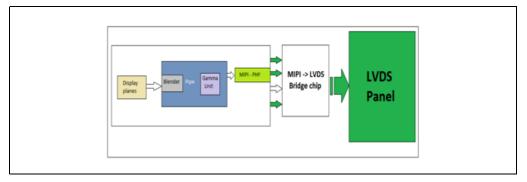
MIPI DSI Dual-link Mode

The SoC supports MIPI DSI dual-link mode, so that a single display can transmit a single stream of video data across two independent MIPI DSI interfaces. The packetization and timing of each link follows MIPI DSI 1.00 and DPHY 1.00 precisely, but the receiving device, which is a panel or a bridge, can combine the streaming data from two interfaces and display it in a single panel.

There are two types of dual-link panels that the SoC can support: front-back type and pixel alternative type. In the front-back type of panel, the first half of columns of pixels is always transmitted by port A and the TXEond half of columns of pixels is always transmitted by port B.

In the pixel alternative type of panel, odd columns of pixels are always transmitted by port A and even columns of pixels are always transmitted by port B. So the 1st, 3rd, 5th, 7th, etc., pixels are separated at the source and sent in the first interface; the 2nd, 4th, 6th, 8th, etc., pixels are sent in the TXEond interface. When the platform requires a dual-link interface for a large MIPI DSI panel or bridge (usually with resolution larger than 1920x1080 in which a 4-lane interface does not have enough bandwidth), the driver treats dual-link a special port configuration, with special handling of DSI controller but the operation of dual-link mode is consistent with single-link mode for planes and pipe operations. The system interface with upper level of SW doesn't need to change, like flip mechanism, interrupt, and so on.

Stereoscopic Support on MIPI


MIPI supports S3D content depending on the panel. If the MIPI panel is detected to support 3D video format then the SW driver will program them for the correct pipe timing parameters.

The left and right frames can be loaded from independent frame buffers in the main memory. Depending on the input S3D format, the display controller can be enabled do perform frame repositioning, image scaling, and line interleaving.

LVDS Panel Support

An external MIPI DSI-to-LVDS bridge device is required to connect the display controller to a LVDS panel. A bridge device is used for larger panels. Figure 6 shows the block diagram.

Figure 6. Block Diagram of Bridge Device to Drive LVDS Panels

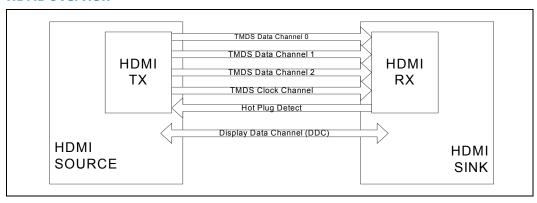
5.4.1.3 High Definition Multimedia Interface

The High-Definition Multimedia Interface (HDMI) is provided for transmitting digital audio and video signals from DVD players, set-top boxes and other audiovisual sources to television sets, projectors and other video displays. It can carry high quality multi-

channel audio data and all standard and high-definition consumer electronics video formats. HDMI display interface connecting the SoC and display devices utilizes transition minimized differential signaling (TMDS) to carry audiovisual information through the same HDMI cable.

HDMI includes three separate communications channels: TMDS, DDC, and the optional CEC (consumer electronics control) (not supported by the SoC). As shown in Figure 7 the HDMI cable carries four differential pairs that make up the TMDS data and clock channels. These channels are used to carry video, audio, and auxiliary data. In addition, HDMI carries a VESA DDC. The DDC is used by an HDMI Source to determine the capabilities and characteristics of the sink.

Audio, video and auxiliary (control/status) data is transmitted across the three TMDS data channels. The video pixel clock is transmitted on the TMDS clock channel and is used by the receiver for data recovery on the three data channels. The digital display data signals driven natively through the SoC are AC coupled and needs level shifting to convert the AC coupled signals to the HDMI compliant digital signals.

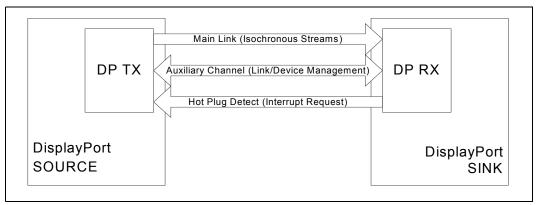

The SoC HDMI interface is designed as per the High-Definition Multimedia Interface Specification 1.4. The SoC supports High-Definition Multimedia Interface Compliance Test Specification 1.4.

5.4.1.3.1 Stereoscopic Support on HDMI

SoC display supports HDMI 1.4 3D video formats. If the HDMI panel is detected to support 3D video format then the SW driver will program Pipe2dB for the correct pipe timing parameters.

The left and right frames can be loaded from independent frame buffers in the main memory. Depending on the input S3D format, the display controller can be enabled do perform frame repositioning, image scaling, line interleaving.

Figure 7. HDMI Overview


5.4.1.4 Display Port

Display Port is a digital communication interface that utilizes differential signalling to achieve a high bandwidth bus interface designed to support connections between PCs and monitors, projectors, and TV displays. Display Port is also suitable for display connections between consumer electronics devices such as high definition optical disc players, set top boxes, and TV displays.

A Display Port consists of a Main Link, Auxiliary channel, and a Hot Plug Detect signal. The Main Link is a uni-directional, high-bandwidth, and low latency channel used for transport of isochronous data streams such as uncompressed video and audio. The Auxiliary Channel (AUX CH) is a half-duplex bidirectional channel used for link management and device control. The Hot Plug Detect (HPD) signal serves as an interrupt request for the sink device.

The SoC supports DisplayPort Standard Version 1.1.

Figure 8. DisplayPort* Overview

5.4.1.5 Embedded DisplayPort (eDP)

Embedded DisplayPort (eDP) is a embedded version of the DisplayPort standard oriented towards applications such as notebook and All-In-One PCs. eDP is supported only on Digital Display Interfaces 0 and/or 1. Like DisplayPort, Embedded DisplayPort also consists of a Main Link, Auxiliary channel, and a optional Hot Plug Detect signal.

Each eDP port can be configured for up-to 4 lanes.

The SoC supports Embedded DisplayPort Standard Version 1.3.

5.4.1.5.1 DisplayPort Auxiliary Channel

A bidirectional AC coupled AUX channel interface replaces the $\rm I^2C$ for EDID read, link management and device control. $\rm I^2C$ -to-Aux bridges are required to connect legacy display devices.

5.4.1.5.2 Hot-Plug Detect (HPD)

The SoC supports HPD for Hot-Plug sink events on the HDMI and DisplayPort interfaces.

5.4.1.5.3 Integrated Audio over HDMI and DisplayPort

SoC can support two audio streams on DP/HDMI ports. Each stream can be programmable to either DDI port. HDMI/DP audio streams can be sent with video streams as follows.

LPE mode: In this mode the uncompressed or compressed audio sample buffers are generated either by OS the audio stack or by audio Lower Power Engine (LPE) and stored in system memory. The display controller fetches audio samples from these buffers, forms an SPDIF frame with VUCP and preamble (if needed), then sends out with video packets.

5.4.1.5.4 High-Bandwidth Digital Content Protection (HDCP)

HDCP is the technology for protecting high definition content against unauthorized copy or unreceptive between a source (computer, digital set top boxes, etc.) and the sink (panels, monitor, and TV). The SoC supports HDCP 1.4/2.1 for content protection over wired displays (HDMI, DisplayPort and Embedded DisplayPort).

5.5 References

- High-Definition Multimedia Interface Specification, Version 1.4
- High-bandwidth Digital Content Protection System, Revision 1.4
- VESA DisplayPort Standard, Version 1.1
- VESA Embedded DisplayPort Standard, Version 1.1

5.6 3D Graphics and Video

The SoC implements a derivative of the Generation 7 graphics engine which consists of rendering engine and bit stream encoder/decoder engine. The rendering engine is used for 3D rendering, media compositing and video encoding. The Graphics engine is built around four execution units (EUs).

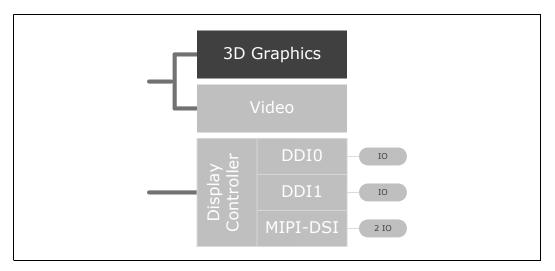
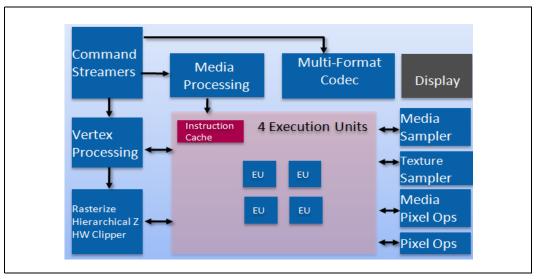



Figure 9. 3D Graphics Block Diagram

5.7 Features

The 3D graphics pipeline architecture simultaneously operates on different primitives or on different portions of the same primitive. All the cores are fully programmable, increasing the versatility of the 3D Engine. The Gen 7.0 3D engine provides the following performance and power-management enhancements:

- Hierarchal-Z
- Video quality enhancements

5.7.1 3D Engine Execution Units

- The EUs perform 128-bit wide execution per clock.
- Support SIMD8 instructions for vertex processing and SIMD16 instructions for pixel processing.

5.7.2 3D Pipeline

5.7.2.1 Vertex Fetch (VF) Stage

The VF stage executes 3DPRIMITIVE commands. Some enhancements have been included to better support legacy D3D APIs as well as SGI OpenGL*.

5.7.2.2 Vertex Shader (VS) Stage

The VS stage performs shading of vertices output by the VF function. The VS unit produces an output vertex reference for every input vertex reference received from the VF unit, in the order received.

5.7.2.3 Geometry Shader (GS) Stage

The GS stage receives inputs from the VS stage. Compiled application-provided GS programs, specifying an algorithm to convert the vertices of an input object into some output primitives. For example, a GS shader may convert lines of a line strip into polygons representing a corresponding segment of a blade of grass centered on the line. Or it could use adjacency information to detect silhouette edges of triangles and output polygons extruding out from the edges.

5.7.2.4 Clip Stage

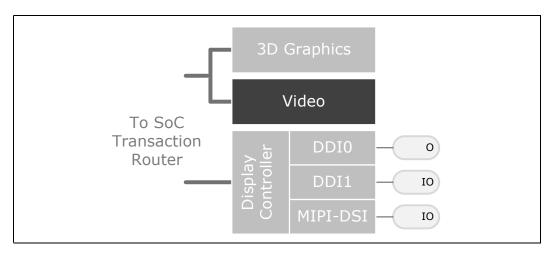
The Clip stage performs general processing on incoming 3D objects. However, it also includes specialized logic to perform a Clip Test function on incoming objects. The Clip Test optimizes generalized 3D Clipping. The Clip unit examines the position of incoming vertices, and accepts/rejects 3D objects based on its Clip algorithm.

5.7.2.5 Strips and Fans (SF) Stage

The SF stage performs setup operations required to rasterize 3D objects. The outputs from the SF stage to the Windower stage contain implementation-specific information required for the rasterization of objects and also supports clipping of primitives to some extent.

5.7.2.6 Windower/IZ (WIZ) Stage

The WIZ unit performs an early depth test, which removes failing pixels and eliminates unnecessary processing overhead.


The Windower uses the parameters provided by the SF unit in the object-specific rasterization algorithms. The WIZ unit rasterizes objects into the corresponding set of pixels. The Windower is also capable of performing dithering, whereby the illusion of a higher resolution when using low-bpp channels in color buffers is possible. Color dithering diffuses the sharp color bands seen on smooth-shaded objects.

5.7.3 Video Engine

The video engine is part of the Intel Processor Graphics for image processing, play-back and transcode of Video applications. Processor Graphics video engine has a dedicated fixed hardware pipe-line for high quality decode and encode of media content. This engine supports Full HW acceleration for decode of AVC/H.264, VC-1 and MPEG -2 contents along with encode of MPEG-2 and AVC/H.264 apart from various video processing features. The new Processor Graphics Video engine adds support for processing features such as frame rate conversion, image stabilization and gamut conversion.

5.8 VED (Video Encode/Decode)

The video engine is part of the Intel Processor Graphics for image processing, play-back and transcode of Video applications. Processor Graphics video engine has a dedicated fixed hardware pipe-line for high quality decode and encode of media content. SoC Video Encode Decode block incorporates VXD 392 video decode core and supports the following codec: VP8.

5.8.1 Features

The features for the Video decode hardware accelerator in SoC are:

- VED core can be configured on a time division multiplex basis to handle single, dual and multi-stream HD decoding.
- VED provides full hardware acceleration support for VP8.

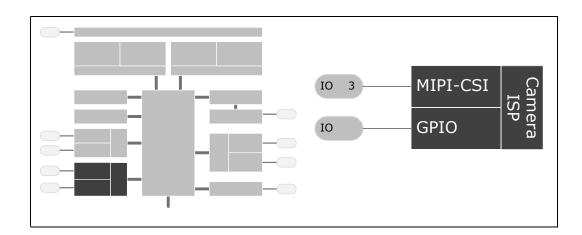
Table 56. Hardware Accelerated Video Decode Codec Support

Category	Codec Format
Media decode rate	Upto 1080p@60fps and 3x 4kx2k @30fps (H.264/ JPEG/MJPEG/MVC/MPEG-2 / WMV9/VC1)
Media encode rate	Upto 1080p@60fps and 1x 4kx2k @30fps (H.264)

Note:

We use IMG VP8 video decode engine on SoC. There are 21 functional units in this decoder. The spec shows that you can dynamically clock gate some of these units.

§



6 MIPI-Camera Serial Interface (CSI) and ISP

The MIPI CSI and controller front end interfaces with three sensors and is capable of simultaneously acquiring three streams, one from each sensor. These three streams are presented to the ISP.

Note:

If a 1-lane sensor needs to be connected to a MIPI-CSI port, that port must use a 1-lane port configuration.

6.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- Direction: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 57. CSI Signals (Sheet 1 of 2)

Signal Name	Direction	Description
MCSI1_CLKP/N	I	Clock Lane: MIPI CSI input clock lane 0 for port 1.
MCSI1_DP/N[3:0]	I	Data Lanes: Four MIPI CSI Data Lanes (0-3) for port 1. Lanes 2 and 3 can optionally used as data lanes for port 3.
MCSI2_CLKP/N	I	Clock Lane: MIPI CSI input clock lane 0 for port 2.

Table 57. CSI Signals (Sheet 2 of 2)

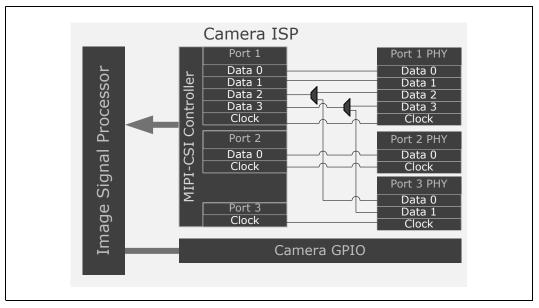

Signal Name	Direction	Description
MCSI2_DP/N[0]	I	Data Lane: Single MIPI CSI Data Lanes for port 2.
MCSI3_CLKP/N	I	Clock Lane: MIPI CSI input clock lane 0 for port 3.
MCSI_RCOMP	I/O	Resistor Compensation: This is for pre-driver slew rate compensation for the MIPI CSI Interface.

Table 58. GPIO Signals

Signal Name	Direction /Type	Description
MCSI_GPIO[00]	I/O	Output from shutter switch when its pressed halfway. This switch state is used to trigger the Auto focus LED for Xenon Flash or Torch mode for LED Flash
MCSI_GPIO[01]	I/O	Output from shutter switch when its pressed full way. This switch state is used to trigger Xenon flash or LED Flash
MCSI_GPIO[02]	I/O	Active high control signal to Xenon Flash to start charging the Capacitor
MCSI_GPIO[03]	I/O	Active low output from Xenon Flash to indicate that the capacitor is fully charged and is ready to be triggered
MCSI_GPIO[04]	I/O	Active high Xenon Flash trigger / Enables Torch Mode on LED Flash IC
MCSI_GPIO[05]	I/O	Enables Red Eye Reduction LED for Xenon / Triggers STROBE on LED Flash IC /
MCSI_GPIO[06]	I/O	Camera Sensor 0 Strobe Output to SoC to indicate beginning of capture / Active high signal to still camera to power down the device.
MCSI_GPIO[07]	I/O	Camera Sensor 1 Strobe Output to SoC to indicate beginning of capture / Active high signal to still camera to power down the device.
MCSI_GPIO[08]	I/O	Active high signal to video camera to power down the device.
MCSI_GPIO[09]	I/O	Active low output signal to reset digital still camera #0.
MCSI_GPIO[10]	I/O	Active low output signal to reset digital still camera #1
MCSI_GPIO[11]	I/O	Active low output signal to reset digital video camera

Figure 10. Camera Connectivity

6.2 Features

- Integrated MIPI-CSI 2.0 interface
- Image Signal Processor (ISP) with DMA and local SRAM
- Imaging data is received by the MIPI-CSI interface and is relayed to the ISP for processing
- Up to five MIPI-CSI 2.0 data lanes
 - Each lane can operate at up to 1GT/s. resulting in roughly 800 Mbit/s of actual pixels
- The MIPI-CSI interface supports lossless compressed image streams to increases the effective bandwidth without losing data
- Up to 24MP sensors supported, and full HD 1080p60
 - Can also support Stereo HD 1080p30
- Up to two cameras can be operated simultaneously
 - Stereoscopic Captures
 - Front + Back Camera Usage

6.2.1 Imaging Capabilities

The following table summarizes imaging capabilities.

Table 59. Imaging Capabilities

Feature	Capabilities
Sensor interface	Configurable MIPI-CSI2 interfaces.
	3 sensors: x2, x2, x1 or x3, x1, x1
	2 sensors: x4, x1
Simultaneous sensors	Up to 2 simultaneous sensors
2D Image capture	24MP @ 15fps
2D video capture	Up to 1080p60
Input formats	RAW 8, 10, 12, 14, RGB444, 565, 888, YUV420, 422, JPEG.
(Sensor -> SoC)	
Output formats	YUV422, YUV420, RAW
(SoC -> Sensor)	
Special Features	Image and video stabilization
	Low light noise reduction
	Burst mode capture
	Memory to memory processing
	3A (Auto Exposure (AE), Auto White Balance (AWB) and Auto Focus (AF))
	High Dynamic Range (HDR)
	Multi-focus
	Zero shutter lag

6.2.2 Simultaneous Acquisition

All three cameras can be active at the same time.

SoC will support on-the-fly processing for only one image at a time. While this image is being processed on-the-fly, images from the other two cameras are saved to DRAM for later processing.

6.2.3 Primary Camera Still Image Resolution

Maximum still image resolution for the primary camera in post-processing mode is limited by the resolution of the sensors. Currently 24 Mpixel sensors are supported.

Maximum primary camera on-the-fly still image resolution for primary camera is 16 Mpixel at 18 fps.

Higher resolution, or higher frame rates are supported as long as the product of resolution and frame rate does not exceed 288 Mpixels/s (= 16 Mpixels * 18 fps).

Maximum primary camera on-the-fly stereoscopic still image resolution for primary camera is 8 Mpixel for each of the left and right images at 18 fps. The number of Mpixels can be increased by decreasing the frame rate.

6.2.4 Burst Mode Support

The SoC supports capturing multiple images back to back at maximum sensor resolution. At least 5 images must be captured in burst mode. The maximum number of images that can be so captured is limited only by available system memory. These images need not be processed on-the-fly.

6.2.5 Continuous Mode Capture

SoC supports capturing images and saving them to DRAM in a ring of frame buffers continuously at maximum sensor resolution. These images must then be fetched and processed on-the-fly by the ISP. This adds a round trip to memory for every frame and increases the bandwidth requirements.

6.2.6 Secondary Camera Still Image Resolution

Maximum secondary camera still image resolution is 4 Mpixel at 15 fps.

6.2.7 Primary Camera Video Resolution

Maximum primary camera video resolution is 1080p60.

Maximum primary camera dual video resolution is 1080p30.

Maximum stereo resolution is 1080p30.

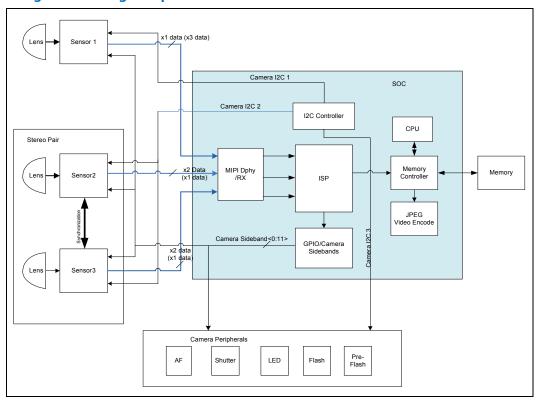
6.2.8 Secondary Camera Video Resolution

Maximum secondary camera video resolution is 1080p30.

6.2.9 Bit Depth

Capable of processing 14-bit images at the stated performance levels.

Capable of processing 18-bit images at half the performance levels, i.e. process on-the-fly 16 Mpixel 18-bit images at 7 fps instead of 15 fps.


Capable of processing up to 18-bit precision.

The higher precision processing will be employed mainly for high dynamic range imaging (HDR).

6.3 Imaging Subsystem Integration

Figure 11. Image Processing Components

6.3.1 CPU Core

The CPU core augments the signal processing capabilities of the hardware to perform post-processing on images such as auto focus, auto white balance, and auto exposure. The CPU also runs the drivers that control the GPIOs and $\rm I^2C$ for sensor control.

6.3.2 Imaging Signal Processor (ISP)

The ISP (Imaging Signal Processor) includes a 64-way vector processor enabling high quality camera functionality. Key features include support of three camera sensors.

6.3.2.1 MIPI-CSI-2 Ports

The SoC has three MIPI clock lanes and five MIPI data lanes. The Analog Front End (AFE) and Digital Physical Layer (DPHY) take these lanes and connects them to three virtual ports. Two data lanes are dedicated to each of the rear facing cameras and the remaining one data lane is connected to the front facing camera. The MIPI interfaces follow the MIPI-CSI-2 specifications as defined by the MIPI Alliance. They support YUV420, YUV422, RGB444, RGB555, RGB565, and RAW 8b/10b/12b. Both MIPI ports

support compression settings specified in MIPI-CSI-2 draft specification 1.01.00 Annex E. The compression is implemented in Hardware with support for Predictor 1 and Predictor 2. Supported compression schemes:

- 12-8-12
- 12-7-12
- 12-6-12
- 10-8-10
- 10-7-10
- 10-6-10

The data compression schemes above use an X-Y-Z naming convention where X is the number of Bits per pixel in the original image, Y is the encoded (compressed) Bits per pixel and Z is the decoded (uncompressed) Bits per pixel.

6.3.2.2 I²C for Camera Interface

The platform supports three (3) I^2C ports for the camera interface. These ports are used to control the camera sensors and the camera peripherals such as flash LED and lens motor.

6.3.2.3 Camera Sideband for Camera Interface

Twelve (12) GPIO signals are allocated for camera functions, refer to Table 58 for signal names. These GPIOs are multiplexed and are available for other usages without powering on the ISP. The ISP provides a timing control block through which the GPIOs can be controlled to support assertion, de-assertion, pulse widths and delay. The configuration below of camera GPIOs is just an example of how the GPIOs can be used. Several of these functions could be implemented using $\rm I^2C$, depending on the sensor implementation for the platform.

- Sensor Reset signals
 - —Force hardware reset on one or more of the sensors.
- Sensor Single Shot Trigger signal
 - —Indicate that the target sensor needs to send a full frame in a single shot mode, or to capture the full frame for flash synchronization.
- PreLight Trigger signal
 - —Light up a pilot lamp prior to firing the flash for preventing red-eye.
- Flash Trigger signal
 - —Indicate that a full frame is about to be captured. The Flash fires when it detects an assertion of the signal.
- Sensor Strobe Trigger signal
 - —Asserted by the target sensor to indicate the start of a full frame, when it is configured in the single shot mode, or to indicate a flash exposed frame for flash synchronization.

6.4 Functional Description

At a high level, the Camera Subsystem supports the following modes:

- Preview
- Image capture
- Video capture

6.4.1 Preview Mode

Once the ISP and the camera subsystem is enabled, the ISP goes into the preview mode where very low resolution frames, such as VGA/480p (programmable), are being processed.

6.4.2 Image Capture

During the image capture mode, the camera subsystem can acquire at a peak throughput of 24 Mpixels @ 15fps. While doing this, it continues to output preview frames simultaneously.

- The ISP can output RAW, RGB or YUV formats. The ISP can capture one full frame at a time or perform burst mode capture, where up to five full back-to-back frames are recorded.
- The ISP will not limit the number of back-to-back full frames captured, but the number is programmable and determined on how much memory can be allocated dynamically.
- The ISP can process all the frames on the fly and writes to memory only after fully processing the frames, without requiring download of any part of the frame for further processing.
 - —The exceptions to this approach are image stabilization and some other advanced functions requiring temporal information over multiple frames.

The ISP can support image stabilization in image capture model.

- The ISP initially outputs preview frames.
- When the user decides to capture the picture, image stabilization is enabled. The ISP checks the previous frame for motion and compensates for it appropriately.

Auto Exposure (AE), Auto Focus (AF), and Auto White Balance (AWB), together known as 3A, are implemented in the CPU to provide flexibility.

6.4.3 Video Capture

During video recording, the ISP can capture video up to 1080p @ 60 fps and output preview frames concurrently. The ISP output video frames to memory in YUV420 or YUV422 format.

6.4.4 ISP Overview

The Camera Subsystem consists of 2 parts, the hardware subsystem and a software stack that implements the ISP functionality on top of this hardware.

The core of the ISP is a vector processor. The vector processor is supported by the following components:

- · Interfaces for data and control
- A small input formatter that parallelizes the data
- A scalar (RISC) processor, for system control and low-rate processing
- · An accelerator for scaling, digital zoom, and lens distortion correction
- A DMA engine transfers large amounts of data such as input and output image data or large parameter sets between LPDDR2 and the ISP block.

6.4.5 Memory Management Unit (MMU)

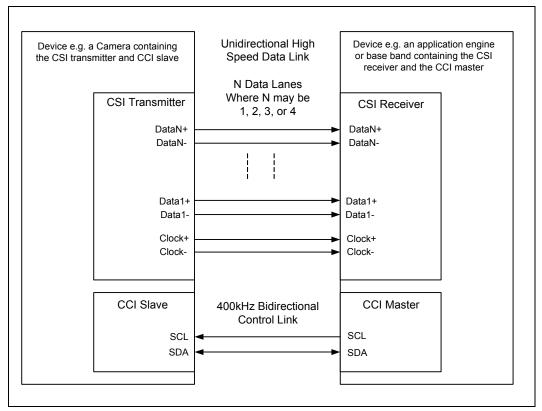
The camera subsystem has capabilities to deal with a virtual address space, since a contiguous memory range in the order 16–32MB cannot be guaranteed by the OS.

6.4.5.1 Interface

The MMU performs the lookup required for address translation from a virtual to physical 32-bit address. The lookup tables are stored external to the system. The MMU performs the lookup through a master interface without burst support that is connected to the Open Core Protocol (OCP) master of the subsystem. The MMU configuration registers can be accessed through a 32-bit Core I/O (CIO) slave interface. Additionally there is a 32-bit CIO slave interface connected to the address translator.

6.5 MIPI-CSI-2 Receiver

MIPI-CSI-2 devices are camera serial interface devices. They are categorized into two types, a CSI transmitter device with Camera Control Interface (CCI) slave and CSI receiver device with CCI master.


Data transfer by means of MIPI-CSI is unidirectional that is, from transmitter to receiver. CCI data transfer is bidirectional between the CCI slave and master.

Camera Serial Interface Bus (CSI) is a type of serial bus that enables transfer of data between a Transmitter device and a receiver device. The CSI device has a point-to-point connections with another CSI device by means of D-PHYs and as shown in Figure 12.

Similarly, CCI (Camera Control Interface bus) is a type of serial bus that enables transfer back and forth between the master CCI and a Slave CCI Unit.

Figure 12. MIPI-CSI Bus Block Diagram

D-PHY data lane signals are transferred point-to-point differentially using two signal lines and a clock lane. There are two signaling modes, a high speed mode that operates at 1000Mbs and a low power mode that works at 10Mbs. The mode is set to low power mode and a stop state at start up/power up. Depending on the desired data transfer type, the lanes switch between high and low power modes.

The CCI interface consists of an I^2C bus which has a clock line and a bidirectional data line.

The MIPI-CSI-2 devices operate in a layered fashion. There are 5 layers identified at the receiver and transmitter ends.

MIPI-CSI-2 Functional Layers:

• PHY Layer:

 An embedded electrical layer sends and detects start of packet signalling and end of packet signalling on the data lanes. It contains a serializer and deserializer unit to interface with the PPI / lane management unit. There is also a clock divider unit to source and receive the clock during different modes of operation.

• PPI/Lane Management Unit:

 This layer does the lane buffering and distributes the data in the lanes as programmed in a round robin manner and also merges them for the PLI/Low Level Protocol unit.

• PLI/Low Level Protocol Unit:

— This layer packetizes as well as de-packetizes the data with respect to channels, frames, colors and line formats. There are ECC generator and corrector units to recover the data free from errors in the packet headers. There is also a CRC checker or CRC generator unit to pack the payload data with CRC checksum Bits for payload data protection.

• Pixel/Byte to Byte/Pixel Packing Formats:

 Conversion of pixel formats to data bytes in the payload data is done depending on the type of image data supported by the application. It also re-converts the raw data bytes to pixel format understandable to the application layer.

Application:

 Depending on the type of formats, camera types, capability of the camera used by the transmitter, the application layer recovers the image formats and reproduces the image in the display unit. It also works on de-framing the data into pixel-to-packing formats. High level encoding and decoding of image data is handled in the application unit.

6.5.1 MIPI-CSI-2 Receiver Features

CSI Features:

- Compliant to CSI-2 MIPI specification for Camera Serial Interface (Version 1.00)
- Supports standard D-PHY transceiver compliant to the MIPI Specification
- Supports PHY data programmability up to four lanes.
- Supports PHY data time-out programming.
- Has controls to start and re-start the CSI-2 data transmission for synchronization failures and to support recovery.
- The ISP may not support all the data formats that the CSI-2 receiver can handle.
 Refer to Table 59 for formats supported by the ISP
- Supports all generic short packet data types.
- Single Image Signal Processor interface for pixel transfers to support multiple image streams for all virtual channel numbers.

D-PHY Features:

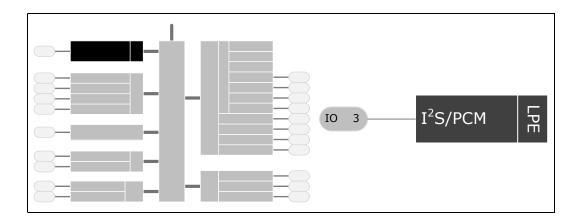
- Supports synchronous transfer in high speed mode with a bit rate of 80-1000Mb/s
- Supports asynchronous transfer in low power mode with a bit rate of 10Mb/s.
- · Differential signalling for HS data
- · Spaced one-hot encoding for Low Power [LP] data
- Data lanes support transfer of data in high speed as well as low power modes.

MIPI-Camera Serial Interface (CSI) and ISP

- Supports ultra low power mode, escape mode, and high speed mode
- Has a clock divider unit to generate clock for parallel data reception and transmission from and to the PPI unit.
- Activates and disconnects high speed terminators for reception and control mode.
- Activates and disconnects low power terminators for reception and transmission.

§

7 Low Power Engine (LPE) for Audio (I²S)


The Low Power Engine for Audio provides acceleration for common audio and voice functions. The voice and audio engine provides a mechanism for rendering audio and voice streams and tones from the operating system, applications to an audio or voice codec, and ultimately to the speaker, headphones, or Bluetooth headsets.

Audio streams in the SoC can be encoded and decoded by the Low Power Engine (LPE) in the Audio subsystem.

LPE Audio provides three external I^2S audio interfaces.

Note: LPE_I2S[1:0] are multiplexed on the same balls as High Definition Audio.

Note: When LPE is active, the High Definition Audio functionality is disabled.

7.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 60. LPE Signals

Signal Name	Direction /Type	Description
LPE_I2S2_CLK	I/O	Clock signal for I ² S
LPE_I2S2_FRM	I/O	Frame select signal for I ² S
LPE_I2S2_DATAIN	I/O	RX data for I ² S
LPE_I2S2_DATAOUT	I/O	TX data for I ² S

NOTE: All LPE signals are muxed and may be used by other functions.

7.2 Features

The LPE Audio Subsystem consists of the following:

- Integrated, power-efficient 32-bit architecture core with 24-bit audio processing instructions
- Core processing speeds up to 343 MHz
- Closely Coupled Memories (CCMs)
 - 80KB Instruction RAM
 - 160KB Data RAM
 - 48KB Instruction Cache
 - 96KB Data Cache
- Very low-power consumption coupled with high-fidelity 24-bit audio
- Dual-issue, static, super-scalar VLIW processing engine
- Mode-less switching between 16-, 24-, and 64-bit dual-issue instructions
- Dual MACs which can operate with 32 x 16-bit and/or 24 x 24-bit operands
- Inter-Process Communication (IPC) mechanism to communicate with the SoC Processor Core including 4KB mailbox memory
- Flexible audio interfaces include three SSPs with I²S port functionality for I-directional audio transfers
 - I²S mode supports PCM payloads
 - Frame counters for all I²S ports
- PWM (Pulse Width Modulation) function
- High Performance DMA
 - DMA IP to support multiple outstanding transactions
 - Interleaved scatter-gather support for Audio DMA transfers
- · Clock switching logic including new frequency increments
- External timer function with an always running clock.

The LPE core runs at a peak clock frequency of 343 MHz and has dedicated on-chip program and data memories and caches. The LPE core can access shared SRAM blocks, and external DRAM through OCP fabric. It communicates with audio peripherals using the audio sub-fabric, and employs Inter-Processor Communication (IPC) mechanism to communicate with the SoC Processor Core.

The Audio subsystem includes two OCP-based DMA engines. These DMA engines support single and multi-block transfers. They can be configured to transfer data between DRAM and audio CCMs or transfer data between CCMs and the audio peripheral interfaces

All these interfaces are peripherals in the Audio subsystem. LPE, LPE DMA, or the SoC processor core may access the peripherals during normal operation. The PMC may access all peripherals during specific tasks such as at boot time or during power state changes. A complete audio solution based on an internal audio processing engine which includes several $\rm I^2S$ -based output ports.

The audio core used is a dedicated audio DSP core designed specifically for audio processing (decoding, post-processing, mixing, etc.)

Note:

LPE requires systems with more than 512MB memory. This is required since the LPE firmware must reside at a stolen memory location on 512MB boundaries below 3 GiB. The LPE firmware itself is \sim 1MB, and is reserved by BIOS for LPE use.

7.2.1 Audio Capabilities

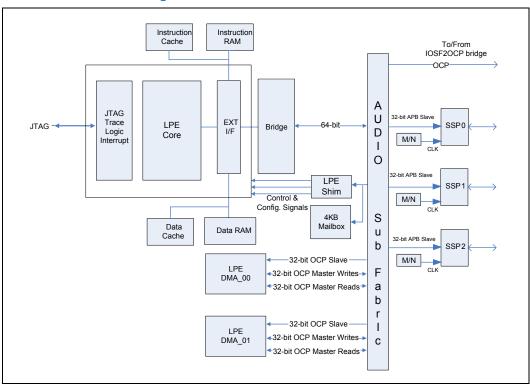
7.2.1.1 Audio Decode

The Audio core supports decoding of the following formats:

- MP3
- AAC-LC
- HE-AAC v1/2
- WMA9,10, PRO, Lossless, Voice
- MPEG layer 2
- RealAudio
- OggVorbis
- FLAC
- DD/DD+

7.2.1.2 Audio Encode

The Audio core supports encoding of the following formats:


- MP3
- AAC-LC
- WMA
- DD-2channel

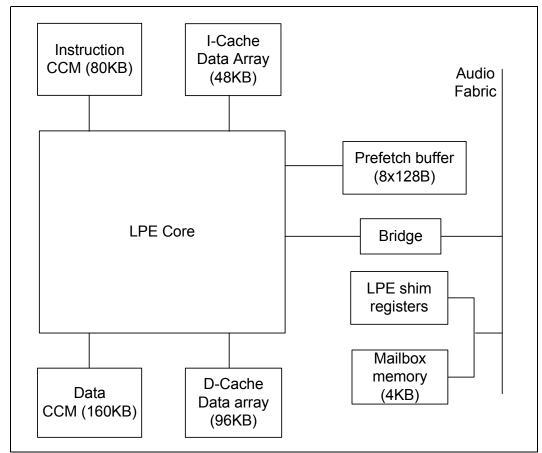
7.3 Detailed Block Level Description

7.3.1 LPE Core

The LPE core in the SoC runs at maximum frequency of 343 MHz and interfaces with the rest of the SoC system through the OCP bus. It is one of the masters on the Audio Sub-Fabric The IA-32 CPU and LPE DMA engines are the other masters on the fabric. The following figure shows the LPE core and its interfaces.

Figure 13. Audio Cluster Block Diagram

The main DSP hardware is a two-multiplier, multiply/accumulate unit, a register file LPE_PR to hold pairs of 24-bit data items, a register file LPE-OR to hold 56-bit accumulator values, an arithmetic/logic unit to operate on the LPE_PR and LPE_OR values, and a shift unit to operate on the LPE_PR and LPE_OR values. The multiply/



accumulate unit also supports multiplication of 32-bit values from LPE_OR registers by 16-bit values from LPE_PR registers, with the 48-bit result written or accumulated in the LPE_OR register. The instructions for the DSP subsystems are built from operations that are divided into two sets: the slot 0 set and the slot 1 set. In each execution cycle, zero or one operations from each set can be executed independently according to the static bundling expressed in the machine code.

7.3.2 Memory Architecture

The LPE core is configured to use local memory and local caches. It has 80KB of Instruction Closely Coupled Memory (CCM), 160KB of Data CCM, 48KB of Instruction Cache and 96KB of Data Cache. The LPE core also has access to 4KB of mailbox memory and external DRAM.

Figure 14. Memory Connections for LPE

7.3.3 Instruction Closely Coupled Memory (CCM)

Instruction CCM for the core is used for loading commonly used routines as well as time-critical processing. Examples of time critical processing are acoustic echo cancellation and noise cancellation during voice calls.

Instruction CCM is initialized after reset by an external DMA controller. Runtime update of instruction CCM can be done either using explicit instructions or using an external DMA controller with inbound access.

7.3.4 Data Closely Coupled Memory (CCM)

Data CCM can be initialized after reset by an external DMA controller using inbound access. Runtime update of data CCM can be done either using stores to Data CCM or using an external DMA controller with inbound access.

7.3.5 Mailbox Memory and Data Exchange

The mailbox memory is a shared memory region in LPE address space that is accessible by the SOC Processor Core, PMC, and LPE. It is used when Doorbell registers cannot hold all the information that one processor wishes to communicate to the other. A typical example of such data blocks are audio stream related parameters when starting a new stream. The structures of data communicated through the mailbox are not defined in hardware so that software may partition the mailbox memory in any desired way and create any meaningful structures required.

7.4 Software Implementation Considerations

7.4.1 SoC Processor Core Cache Coherence

Traffic generated by the LPE core is considered non-cacheable and non-coherent with respect to the SoC Processor Core cache. DMA traffic is considered cacheable and checked for coherency with the SoC Processor Core cache.

Implications of this implementation are as follows:

- All code and tables for the LPE core need to be explicitly flushed from the SoC Processor Core cache if they are ever accessed.
- If the LPE core directly accesses data buffers in system DDR, the driver must explicitly flush the buffer from the SoC Processor Core cache
- If DMA accesses data buffers from system DRAM, the driver need not flush the data buffer from the SoC Processor Core cache.

7.4.2 Interrupts

7.4.2.1 LPE Peripheral Interrupts

Each of the LPE peripherals generates its own interrupts. SSP0, SSP1, and SSP2 have one interrupt each. Each of the DMA channels have individual interrupt lines. These interrupts are connected to the LPE core through the PISR register. The same interrupts are routed to IOAPIC through the ISRX register. The LPE core and SoC Processor Core have individual masks to enable these interrupts.

7.4.2.2 Interrupts Between SoC Processor Core and the LPE

The interrupts between the SoC Processor Core and the LPE are handled through the inter-processor communication registers. Whenever the SoC Processor Core writes to the IPCX communication register an interrupt is generated to the LPE. The LPE firmware sees there is a message waiting from the SoC Processor Core, and reads the IPCX register for the data. This data is a pre-configured message, where the message structure has been decided beforehand between the SoC Processor Core and the LPE. Similarly we have the IPCD register for the communication between the LPE and SoC Processor Core. Once the LPE writes to the IPCD register, an interrupt should be generated for the SoC Processor Core and the SoC Processor Core should read the message from the IPCD register and act accordingly. From a software viewpoint, the mechanism remains the same as before. From a hardware view point, the interrupt to IA-32 gets routed by means of the IOAPIC block. The IPC from Audio to IA-32 gets a dedicated interrupt line to the IOAPIC.

7.4.2.3 Interrupts between PMC and LPE

The interrupts between PMC and LPE are also handled using Inter Process Communication registers.

7.4.3 Power Management Options for the LPE Core

- WAITI
 - Allows the LPE core to suspend operation until an interrupt occurs by executing the optional WAITI instruction.
- External Run/Stall Control Signal
 - This processor input allows external logic to stall large portions of the LPE pipeline by shutting off the clock to much of the processor's logic to reduce operating power when the LPE computational capabilities are not immediately needed by the system.

Note:

Using the WAITI instruction to power down the processor will save more power than use of the external run/stall signal because the WAITI instruction disables more of the LPE's internal clocks.

7.4.3.1 Audio S0ix Low Power Mode Entry

- S0i1 and S0i2 entry are identical from the audio subsystem perspective. The choice between S0i1 and S0i2 is decided by the latency that can be tolerated. For MP3 codec playback the system uses S0i2.
- As part of S0ix entry decision making, SCU firmware needs to comprehend the
 frequency requirements of the audio core and the latency tolerance (LTR) as
 reported by audio firmware to SCU firmware (by means of the IPC). The audio core
 frequency requirement has to be either 19.2 or 38.4 MHz for the system to enter
 into S0ix with audio ON. Similarly the LTR reported earlier by audio firmware has to
 allow S0ix entry.

7.4.4 External Timer

This timer always runs from SSP clock (before M/N divider) at 19.2/25MHz. The timer starts running once the run bit is set and the clear bit is cleared.

The timer generates an Interrupt pulse when the counter value matches the "match" value. The interrupt does not get generated if the match value is set to "0". The timer runs in free running mode and rolls over after all 32 Bits have become all 1's.

The timer continues to run as long as the run bit is set. Once the run bit is cleared the timer holds the current value. The clear bit needs to be set to restart the timer from "0".

7.5 Clocks

7.5.1 Clock Frequencies

Table 61 shows the clock frequency options for the Audio functional blocks.

Table 61. Clock Frequencies

Clock	Frequency	Notes
Audio core	343/250/200 MHz/100/ 50 MHz/2x Osc/Osc	Audio input clock trunk. CCU drives one of several frequencies as noted.
DMA 0	50/OSC	DMA clock
DMA1	50/OSC	DMA clock
Audio fabric clock	50/OSC	Fabric clock derived from audio core clock
SSP0 Clock	Fabric side: 50/OSC Link side: Up to 19.2 MHz	SSP0 clock domains
SSP1 Clock	Fabric side: 50/OSC Link side: Up to 19.2 MHz	SSP1 clock domains
SSP2 Clock	Fabric side: 50/OSC Link side: Up to 19.2 MHz	SSP2 clock domains

7.5.2 50 MHz Clock for LPE

50 MHz, the 2X OSC clock, is added to increase MIPS for low power MP3 mode. This frequency will be supplied by the clock doubler internal to the SoC's Clock Control Unit.

7.5.3 Cache and CCM Clocking

Data CCM, Data cache, Instruction CCM, and Instruction Cache run off of the LPE clock. These memories are in a single clock domain.

Note: All Data CCM and Instruction CCM run in the same clock domain.

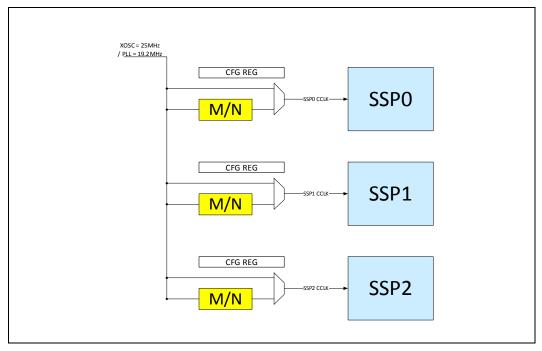
7.5.4 SSP Clocking

SSP could be used as either clock masters or clock slaves. Consequently, theses IP have dual clock domains.

The first clock domain is clocked from an internal clock (e.g., fabric clock) and is used for generic logic like interrupt generation and register access.

The second clock domain drives the serial shift register (either driven internally or externally). When driven internally, this clock can be sourced from XTAL clock 25 MHz or PLL 19.2 MHz. These clocks are then divided down within the serial interface IP to generate the final bit clock for the interface.

After power on, if the SSP input IO clock is in high state, first transition of the clock from high to low may be missing due to the Soc clock gating logic.


Note: "Frame Master" mode cannot be used when operating as clock slave and "Frame Slave" mode cannot be used when operating as clock master.

7.5.5 M/N Divider

LPE SSP in master mode uses the SSP CCLK to drive the serial clock. It has very limited option to divide CCLK. An M/N divider is added between the 25 MHz clock (XOSC) from CCU to each SSP CCLK input as shown in following diagram:

Figure 15. SSP CCLK Structure

Note: The M/N divider has bypass option so VLV could be configured to act same as TNG.

The LPE M/N divider is designed to produce a clock signal for the SSP block used in master mode. The divider is based on a generic NOM/DENOM divider. The supplied Master clock is 25 MHz (XTAL) or 19.2 MHz (LPPLL), but usually be used by the 25 MHz clock.

This mechanism is good for a wide spectrum of generated clocks. Two registers must be configured to get the target SSP clock. The values for the Nominator and Denominator registers are the smallest divider of:

$$\frac{Nominator}{Denominator} = \frac{Source_clock}{Target_clock}$$

7.5.5.1 Example

If we want to generate 17.64 MHz (=400x44.1 KHz) output clock out of 25 MHz clock, we need to program "NOM = 441" and "DENOM = 625":

 $17.64 \text{ MHz} = (441/625) \times 25 \text{ MHz}$

In general the M over N can generate fractional devisor that could be used for generating the required clocks for Audio codec. Table 62 describes some configuration options of this generic divider:

Table 62. M/N Values, Examples

Source Clock Frequency	Requested Clock	M/N Value
	48 KHz	6/3125
	48K x 24 = 1.152 MHz	1152/25000
25 MHz	48K x32 = 1.536 MHz	1536/25000
	48K x 64 = 3.072 MHz	3072/25000
	44.1 KHz	441/250000
	48K x 400 = 19.2 MHz	96/125
	44.1K x 400 = 17.64 MHz	441/625

7.5.5.2 Accuracy and Jitter

The output of the M/N is equal to the desired clock in average with Jitter of 20nTXE for 25 MHz input clock.

7.5.5.3 Configuration

Following configurable fields per M/N divider/SSP are in LPE shim registers:

Table 63. M/N Configurable Fields

Field	Width	Description
Bypass	1 bit	When set M/N divider is bypass. Clock from CCU is connected directly to SSP CCLK
EN	1 bit	Enable the divider
Update	1 bit	Update divider parameters
M Value	20 Bits	Nominator value
N Value	20 Bits	Denominator value

7.6 SSP (I^2S)

The SoC audio subsystem consists of the LPE Audio Engine and three Synchronous Serial Protocol (SSP) ports. These ports are used in PCM mode and enable simultaneous support of voice and audio streams over I²S. The SoC audio subsystem also includes two DMA controllers dedicated to the LPE. The LPE DMA controllers are used for transferring data between external memory and CCMs, between CCMs and the SSP ports, and between CCMs. All peripheral ports can operate simultaneously.

The Enhanced SSP Serial Ports are full-duplex synchronous serial interfaces. They can connect to a variety of external analog-to-digital (A/D) converters, audio, and telecommunication codecs, and many other devices which use serial protocols for transferring data. Formats supported include National* Microwire, Texas Instruments* Synchronous Serial Protocol (SSP), Motorola* Serial Peripheral Interface (SPI) protocol and a flexible Programmable Serial Port protocol (PSP).

The Enhanced SSPs operate in master mode (the attached peripheral functions as a slave) or slave mode (the attached peripheral functions as a master), and support serial bit rates from 0 to 25 Mbps, dependent on the input clock. Serial data formats range from 4 to 32-Bits in length. Two on-chip register blocks function as independent FIFOs for transmit and receive data.

FIFOs may be loaded or emptied by the system processor using single transfers or DMA burst transfers of up to the FIFO depth. Each 32-bit word from the bus fills one entry in a FIFO using the lower significant Bits of a 32-bit word.

7.6.1 SSP Features

The SSP port features are:

- Inter-IC Sound (I²S) protocols, are supported by programming the Programmable Serial Protocol (PSP).
- One FIFO for transmit data (TXFIFO) and a second, independent, FIFO for receive data (RXFIFO), where each FIFO is 16 samples deep x 32 Bits wide
- Data sample sizes from 8, 16, 18, or 32 Bits
- 12.5 Mbps maximum serial bit-rate in both modes: master and slave.
- Clock master or slave mode operations
- Receive-without-transmit operation
- Network mode with up to eight time slots for PSP formats, and independent transmit/receive in any/all/none of the time slots.
- After updating SSP configuration, for example active slot count, the SSP will need to be disabled and enabled again. In other words, a SSP will not function correctly if a user changes the configuration setting on the fly.

7.6.2 Operation

Serial data is transferred between the LPE core or the SoC Processor Core and an external peripheral through FIFOs in one of the SSP ports. Data transfers between an SSP port and memory are initiated by either the LPE core or the SoC Processor Core using programmed I/O, or by DMA bursts. Although it is possible to initiate transfers directly from the SoC Processor Core, current driver design uses LPE for all PCM operations. Separate transmit and receive FIFOs and serial data paths permit simultaneous transfers in both directions to and from the external peripheral, depending on the protocols chosen.

Programmed I/O can transfer data between:

- The LPE core and the FIFO Data register for the TXFIFO
- The SoC Processor Core and the FIFO Data register for the TXFIFO
- The LPE core and the FIFO Data register for the RXFIFO
- The SoC Processor Core and the FIFO Data register for the RXFIFO
- The SoC Processor Core and the control or status registers

• The LPE core and the control or status registers

DMA bursts can transfer data between:

- Universal memory and the FIFO Data register for the TXFIFO
- Universal memory and the FIFO Data register for the RXFIFO
- Universal memory and the sequentially addressed control or status registers

7.6.3 LPE and DMA FIFO Access

The LPE or DMA access data through the Enhanced SSP Port's Transmit and Receive FIFOs. An LPE access takes the form of programmed I/O, transferring one FIFO entry per access. LPE accesses would normally be triggered off of an SSSR Interrupt and must always be 32 Bits wide. LPE Writes to the FIFOs are 32 Bits wide, but the serializing logic will ignore all Bits beyond the programmed FIFO data size (EDSS/DSS value). LPE Reads to the FIFOs are also 32 Bits wide, but the Receive data written into the RX FIFO (from the RXD line) is stored with zeroes in the MSBs down to the programmed data size. The FIFOs can also be accessed by DMA bursts, which must be in multiples of 1, 2 or 4 bytes, depending upon the EDSS value, and must also transfer one FIFO entry per access. When the SSCR0.EDSS bit is set, DMA bursts must be in multiples of 4 bytes (the DMA must have the Enhanced SSP configured as a 32-bit peripheral). The DMA's width register must be at least the SSP data size programmed into the SSP control registers EDSS and DSS. The FIFO is seen as one 32-bit location by the processor. For Writes, the Enhanced SSP port takes the data from the Transmit FIFO, serializes it, and sends it over the serial wire (I2S[2:0]_DATAOUT) to the external peripheral. Receive data from the external peripheral (on I2S[2:0]_DATAIN) is converted to parallel words and stored in the Receive FIFO.

A programmable FIFO trigger threshold, when exceeded, generates an Interrupt or DMA service request that, if enabled, signals the CPU or DMA respectively to empty the Receive FIFO or to refill the Transmit FIFO.

The Transmit and Receive FIFOs are differentiated by whether the access is a Read or a Write transfer. Reads automatically target the Receive FIFO, while Writes will write data to the Transmit FIFO. From a memory-map perspective, they are at the same address. FIFOs are 16 samples deep by 32 Bits wide. Each read or write is to 1 SSP sample.

7.6.4 Supported Formats

The SSP consists of four pins that are used to transfer data between the SoC and external Audio codecs, modems, or other peripherals. Although four serial-data formats exist, each has the same basic structure, and in all cases the following pins are used in the following manner:

- I2Sx_CLK—Defines the bit rate at which serial data is driven onto and sampled from the port
- I2Sx_FRM—Defines the boundaries of a basic data "unit," comprised of multiple serial Bits
- I2Sx_DATAIN—The serial data path for transmitted data, from system to peripheral

I2Sx_DATAOUT—The serial data path for received data, from peripheral to system

A data frame can contain from 4 to 32 Bits, depending on the selected format. Serial data is transmitted most significant bit first. The Programmable Serial Protocol (PSP) format is used to implement I^2S .

Master and Slave modes are supported. When driven by the Enhanced SSP, the I2Sx_CLK only toggles during active transfers (not continuously) unless ECRA/ECRB functions are used. When the I2Sx_CLK is driven by another device, it is allowed to be either continuous or only driven during transfers, but certain restrictions on PSP parameters apply.

Normally, the serial clock (I2Sx_CLK), if driven by the Enhanced SSP Port, only toggles while an active data transfer is underway. There are several conditions, however, that may cause the clock to run continuously. If the Receive With Out Transmit mode is enabled by setting the SSCR1.RWOT bit to 1, the I2Sx_CLK will toggle regardless of whether Transmit data exists within the Transmit FIFO. The I2Sx_CLK will also toggle continuously if the Enhanced SSP is in Network mode, or if ECRA, or ECRB is enabled. At other times, I2Sx_CLK will be held in an inactiveI2Sx_FRM or idle state, as defined by the specified protocol under which it operates.

7.6.4.1 Programmable Serial Protocol (PSP)

There are many variations of the frame behavior for different codecs and protocol formats. To allow flexibility the PSP format allows I2Sx_FRM to be programmable in direction, delay, polarity, and width. Master and Slave modes are supported. PSP can be programmed to be either full or half duplex.

The I2Sx_CLK function behavior varies between each format. PSP lets programmers choose which edge of I2Sx_CLK to use for switching Transmit data, and for sampling Receive data. In addition, programmers can control the idle state for I2Sx_CLK and the number of active clocks that precede and follow the data transmission.

The PSP format provides programmability for several parameters that determine the transfer timings between data samples. There are four possible serial clock sub-modes, depending on the I2Sx_CLK edges selected for driving data and sampling received data, and the selection of idle state of the clock.

For the PSP format, the Idle and Disable modes of the I2Sx_DATAOUT, I2Sx_CLK, and I2Sx_FRM are programmable by means of the SSPSP.ETDS, SSPSP.SCMODE and SSPSP.SFRMP Bits. When Transmit data is ready, the I2Sx_CLK will remain in its Idle state for the number of serial clock (I2Sx_CLK) clock periods programmed within the Start Delay (SSPSP.STRTDLY) field. I2Sx_CLK will then start toggling, I2Sx_DATAOUT will remain in the idle state for the number of cycles programmed within the Dummy Start (SSPSP.DMYSTRT) field. The I2Sx_FRM signal will be asserted after the number of half-clocks programmed in the SSPSP.SFRDLY field. The I2Sx_FRM signal will remain asserted for the number of clocks programmed within the SSPSP.SFRMWDTH then deassert. Four to 32 Bits can be transferred per frame. Once the last bit (LSB) is transferred, the I2Sx_CLK will continue toggling based off the Dummy Stop (SSPSP.DMYSTOP) field. I2Sx_DATAOUT either retains the last value transmitted or is

SSPSP.SFRMP=1

SSPSP.SFRMP=0

I2Sx FRM

forced to zero, depending on the value programmed within the End of Transfer Data State (SSPSP.ETDS) field, when the controller goes into Idle mode, unless the Enhanced SSP port is disabled or reset (which forces I2Sx_DATAOUT to zero).

With the assertion of I2Sx_FRM, Receive data is simultaneously driven from the peripheral on I2Sx_DATAIN, most significant bit first. Data transitions on I2Sx_CLK based on the Serial Clock Mode selected and is sampled by the controller on the opposite edge. When the Enhanced SSP is a master to the frame synch (I2Sx_FRM) and a slave to the clock (I2Sx_CLK), then at least three extra clocks (I2Sx_CLKs) will be needed at the beginning and end of each block of transfers to synchronize control signals from the APB clock domain into the SSP clock domain (a block of transfers is a group of back-to-back continuous transfers).

Figure 16. Programmable Serial Protocol Format

T6

T5

NOTE: When in PSP format, if the SSP is the master of the clock (I2Sx_CLK is an output) and the SSPSP.ETDS bit is cleared, the End of Transfer Data State for the I2Sx_DATAOUT line is 0. If the SSP is the master of the clock, and the SSPSP.ETDS bit is set, the I2Sx_DATAOUT line remains at the last bit transmitted (LSB). If the SSP is a slave to the clock (I2Sx_CLK is an input), and modes 1 or 3 are used, the ETDS can only change from the LSB if more clocks (I2Sx_CLK) are sent to the SSP (i.e., dummy stop clocks or slave clock is free running.

SSPSP.SCMODE 00 01 I2Sx_CLK 10 11 MSB I2Sx_DATAOUT MSB LSB End of Transfer LSB Transfer T2 **XX**MSB**X** I2Sx_DATAOUT **X** LSB MSB SSPSP.SFRMP=1 T5 T6 T5 T6 I2Sx_FRM SSPSP.SFRMP=0

Figure 17. Programmable Serial Protocol Format (Consecutive Transfers)

Table 64. Programmable Protocol Parameters

Symbol	Definition (Register.Bit Field)	Range	Units
	Serial Clock Mode (SSPSP.SCMODE)	(Drive, Sample, I2Sx_CLK Idle) 0 = Fall, Rise, Low 1 = Rise, Fall, Low 2 = Rise, Fall, High 3 = Fall, Rise, High	
	Serial Frame Polarity (SSPSP.SFRMP)	High or Low	
T1	Start Delay (SSPSP.STRTDLY)	0-7	Clock Period
T2	Dummy Start (SSPSP.DMYSTRT)	0-3	Clock Period
T3	Data Size (SSCRO.EDSS AND SSCRO.DSS)	4–32	Clock Period
T4	Dummy Stop (SSPSP.DMYSTOP)	0-3	Clock Period
T5	I2Sx_FRM Delay (SPSP.SFRMDLY)	0-88	Half Clock Period
T6	I2Sx_FRM Width (SSPSP.SFRMWDTH)	1-44	Clock Period
	End of Transfer Data State (SSPSP.ETDS)	Low or [bit 0]	

Note:

The I2Sx_FRM Delay must not extend beyond the end of T4. I2Sx_FRM Width must be asserted for at least 1 I2Sx_CLK, and should be de-asserted before the end of the T4 cycle (for example, in terms of time, not bit values, (T5 + T6) <= (T1 + T2 + T3 + T4),

1 <= T6 < (T2 + T3 + T4), and (T5 + T6) >= (T1 + 1) to ensure that I2Sx_FRM is asserted for at least 2 edges of the I2Sx_CLK). The T1 Start Delay value should be programmed to 0 when the I2Sx_CLK is enabled by either of the SSCR1.ECRA or SSCR1.ECRB Bits. While the PSP can be programmed to generate the assertion of I2Sx_FRM during the middle of the data transfer (after the MSB was sent), the Enhanced SSP will not be able to receive data in Frame slave mode (SSCR1SFRMDIR = 1) if the assertion of Frame is not before the MSB is sent (i.e. T5 <= T2 if SSCR1.SFRMDIR =1). Transmit Data will transition from the "End of Transfer Data State" to the next MSB value upon the assertion of Frame. The Start Delay field should be programmed to 0 whenever I2Sx_CLK or I2Sx_FRM is configured as an input. Clock state is not defined between two active frame periods. Clock can be active or inactive between two active frame periods.

7.7 Programming Model

The CPU or DMA access data through the Enhanced SSP Port's Transmit and Receive FIFOs. A CPU access takes the form of programmed I/O, transferring one FIFO entry per access. CPU accesses would normally be triggered off of an SSSR Interrupt and must always be 32 Bits wide. The CPU Writes to the FIFOs are 32 Bits wide, but the serializing logic will ignore all Bits beyond the programmed FIFO data size (EDSS/DSS value). CPU Reads to the FIFOs are also 32 Bits wide, but the Receive data written into the RX FIFO (from the RXD line) is stored with zeroes in the MSBs down to the programmed data size. The FIFOs can also be accessed by DMA bursts, which must be in multiples of 1, 2, or 4 bytes, depending upon the EDSS value, and must also transfer one FIFO entry per access. When the SSCR0.EDSS bit is set, DMA bursts must be in multiples of 4 bytes (the DMA must have the Enhanced SSP configured as a 32-bit peripheral). The DMA DCMD.width register must be at least the SSP data size programmed into the SSP control registers EDSS and DSS. The FIFO is seen as one 32bit location by the processor. For Writes, the Enhanced SSP port takes the data from the Transmit FIFO, serializes it, and sends it over the serial wire (I2Sx DATAOUT) to the external peripheral. Receive data from the external peripheral (on I2Sx_DATAIN) is converted to parallel words and stored in the Receive FIFO.

A programmable FIFO trigger threshold, when exceeded, generates an Interrupt or DMA service request that, if enabled, signals the IA-32 CPU or DMA respectively to empty the Receive FIFO or to refill the Transmit FIFO. The Transmit and Receive FIFOs are differentiated by whether the access is a Read or a Write transfer. Reads automatically target the Receive FIFO, while Writes will write data to the Transmit FIFO. From a memory-map perspective, they are at the same address. Each read or write is 1 SSP sample.

7.7.1 PIO and DMA Programming Considerations

All CPU and DMA accesses transfer one FIFO entry per access. Data in the FIFOs is always stored with one 32-bit value per data sample, regardless of the format data word length. Within each 32-bit field, the stored data sample is right-justified, with the least significant bit of the word in bit 0. In the Receive FIFO, unused Bits are packed as zeroes above the most significant bit. In the Transmit FIFO, unused don't-care Bits are

above the most significant bit (i.e., DMA and CPU access do not have to write to the unused bit locations). Logic in the Enhanced SSP automatically formats data in the Transmit FIFO so that the sample is properly transmitted on I2Sx_DATAOUT in the selected frame format.

Two separate and independent FIFOs are present for Transmit (to peripheral) and Receive (from peripheral) serial data. FIFOs are filled or emptied by programmed I/O or DMA bursts.

7.7.1.1 Programmed IO Considerations

FIFO filling and emptying can be performed by the processor in response to an Interrupt from the FIFO logic. Each FIFO has a programmable FIFO trigger threshold at which an Interrupt is triggered. When the number of entries in the Receive FIFO exceeds the SSCR1.RFT value, an interrupt is generated (if enabled), which signals the CPU to empty the Receive FIFO. When the number of entries in the Transmit FIFO is less than or equal to the SSCR1.TFT value plus 1, an Interrupt is generated (if enabled), which signals the CPU to refill the Transmit FIFO.

Users can also poll the Enhanced SSP Status register to determine how many samples are in a FIFO, and whether the FIFO is full or empty. Software is responsible for ensuring that the proper RFT and TFT values are chosen to prevent ROR and TUR error conditions.

Note:

If the software attempts to read from an empty Receive FIFO, it will receive a duplicate of the previously read value.

7.7.1.2 DMA Considerations

The DMA controller can also be programmed to transfer data to and from the Enhanced SSP FIFOs. To prevent over-runs of the Transmit FIFO or under-runs of the Receive FIFO when using the DMA, be careful when setting the Transmit and Receive FIFO trigger threshold levels.

There are restrictions on how the DMA can be programmed when used with the SSP Controller.

- The DMA Transfer Width must be greater than or equal to the SSP data size. For example if the SSP Data Size is 16b then the DMA Transfer Width should be 16b.
- The DMA may not support the DMA Transfer Width of the SSP Data Size and therefore the DMA Transfer Width must be larger than the SSP Data Size. If this is the case then software must manage any extra data Bits.
- The DMA Burst Transaction Length for RX must be less than or equal to the RX Threshold.
- The DMA Burst Transaction Length for TX must be less than or equal to the number of empty locations in the TX FIFO. A safe value is the Total TX FIFO Size - TX Threshold.
- DMA must be in Fixed Address mode to read or write the SSP Data Register.

In full-duplex formats where the Enhanced SSP always receives the same number of data samples as it transmits, the DMA should be set up to transmit and receive the same number of bytes.

Note:

A TFT value of 0 means that there is one sample left in the TX FIFO.

Because the Enhanced SSP is not flow controlled, software must program the TX FIFO Threshold (TFT), RX FIFO Threshold (RFT), and the DMA burst size to ensure that a TX FIFO overflow or RX FIFO underflow does not occur. Software must also ensure that the Enhanced SSP DMA requests are properly prioritized in the system to prevent fatal overruns and under-runs.

The programming model for using the DMA is as follows:

- Program the total number of Transmit/Receive byte lengths, DMA burst, and DMA Width in the DMA.
- Set the preferred values in the Enhanced SSP Control registers.
- Enable the Enhanced SSP by setting SSCR0.SSE.
- Set the run bit in DMA Command Register.
- The DMA will wait for either the Transmit or Receive Service requests.
- If the Transmit/Receive byte length is not an even multiple of the transfer burst size, a trailing byte condition may occur.

7.7.2 Trailing Bytes in the Receive FIFO

When the number of samples in the Receive FIFO is less than its FIFO trigger threshold level, and no additional data is received, the remaining bytes are called trailing bytes. Trailing bytes can be handled by either the DMA or the processor, as indicated by the SSCR1.TRAIL bit. Trailing bytes are identified by means of a timeout mechanism and the existence of data within the Receive FIFO.

7.7.2.1 Timeout

A timeout condition exists when the Receive FIFO has been idle for a period of time (in APB clocks) defined by the value programmed within the Timeout register (SSTO). When a timeout occurs, the receiver timeout interrupt SSSR.TINT bit will be set to a 1, and if the Timeout Interrupt is enabled SSCR1.TINTE=1, a Timeout Interrupt will occur to signal the processor that a timeout condition has occurred. The timeout timer is reset after a new sample is received. Once the SSSR.TINT bit is set it must be cleared by software by writing a 1 to it. Clearing this bit also causes the Timeout Interrupt, if enabled, to be de-asserted.

7.7.2.2 Peripheral Trailing Byte Interrupt

It is possible for the DMA to reach the end of its Descriptor chain while removing Receive FIFO data. When this happens, the processor is forced to take over because the DMA can no longer service the Enhanced SSP request until a new chain is linked. When the DMA has reached the end of its Descriptor chain, and there is data in the receive FIFO, the Enhanced SSP will do the following:

- Sets the peripheral trailing byte interrupt SSSR.PINT bit to 1
- Asserts the Enhanced SSP Interrupt to signal to the processor that a Peripheral Trailing Byte Interrupt condition has occurred (if SSCR1.PINTE=1 to enable the interrupt).
- Sets the SSSR.EOC status bit which must be cleared by software. If more data is received after the EOC bit was set (and EOC bit is still set), then the SSSR.PINT bit will be set to a 1.

Once the SSSR.PINT bit is set, it must be cleared by software by writing a 1 to it. Clearing the SSSR.PINT bit also de-asserts the Peripheral Interrupt if it has been enabled (SSCR1.PINTE=1).

The remaining bytes must then be removed by means of a processor I/O as described in the processor-based method below, or by reprogramming a new Descriptor chain and restarting the DMA. Programmers need to be aware of this possibility.

7.7.2.3 Removing Trailing Bytes (Processor Based SSCR1.TRAIL=0)

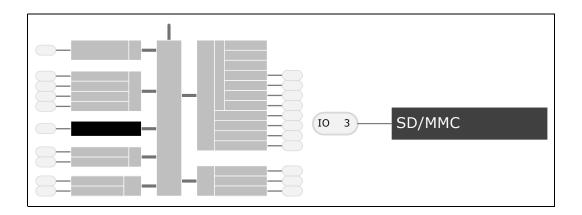
This is the default method indicated by a zero in the SSCR1.TRAIL bit. In this case, no Receive DMA service request is generated. To read out the trailing bytes, software should wait for the timeout Interrupt and then read all remaining entries as indicated by the SSSR.RFL and SSSR.RNE Bits within the Enhanced SSP Status register (SSSR).

Note: To use the Trailing bytes feature through the CPU, the Timeout Interrupt must be enabled by setting SSCR1.TINTE=1 (to enable the interrupt).

7.7.2.4 Removing Trailing Bytes (DMA Based SSCR1.TRAIL=1)

When the DMA is to handle trailing bytes (SSCR1.TRAIL = 1) a DMA service request is automatically issued for the remaining number of samples left in the Receive buffer. The DMA will then empty the contents of the Receive buffer unless the DMA reaches the end of its Descriptor chain. If a timeout occurs, the processor is only interrupted by means of a Timeout Interrupt if it has been enabled by setting SSCR1.TINTE=1. When handling trailing bytes by means of the DMA, if a timeout occurs and the receive FIFO is empty, an End-of-Receive (EOR) will be sent to the DMA Controller. If an EOC occurs at the time that the last sample is read out of the FIFO (the DMA descriptor chain was just exactly long enough), and the timeout counter is still running (that is, a time out has not occurred and the SSTO register is non-zero), then, when the time out does occur, the Enhanced SSP will generate a DMA request which will create an RAS interrupt from the DMA. When this occurs, software must re-program the DMA registers and re-enable the channel for the Enhanced SSP to send its EOR to the DMA controller.

ξ


8 Storage Control Cluster (eMMC, SDIO, SD Card)

The Storage Control Cluster (SCC) consists of SDIO, SD Card and eMMC controllers to support mass storage and IO devices.

- One eMMC 4.5 interface
- One SD Card 3.0 interface
- One SDIO 3.0 interface for SDIO-based Wi-Fi

Note:

All units in the SCC support both PCI mode and ACPI mode of operation. A level shifter may be needed on the platform for SDIO 3.0 compliance.

8.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 65. eMMC Signals

Signal Name	Direction Power	Description
MMC1_CLK	0	eMMC Clock
	V1P8S	The frequency may vary between 26 and 52 MHz.
MMC1_D[7:0]	I/O	eMMC Port Data Bits 0 to 7
	V1P8S	Bidirectional port used to transfer data to and from eMMC device. By default, after power up or reset, only D[0] is used for data transfer. A wider data bus can be configured for data transfer, using either D[0]-D[3] or D[0]-D[7], by the MultiMedia Card controller. The MultiMedia Card includes internal pull-ups for data lines D[1]-D[7]. Immediately after entering the 4-bit mode, the card disconnects the internal pull ups of lines D[1], D[2], and D[3]. Correspondingly, immediately after entering to the 8-bit mode the card disconnects the internal pull-ups of lines D[1]-D[7].
MMC1_CMD	I/O	eMMC Port Command
	V1P8S	This signal is used for card initialization and transfer of commands. It has two modes—open-drain for initialization, and push-pull for fast command transfer.
MMC1_RCOMP	-	eMMC RCOMP
		This signal is used for pre-driver slew rate compensation.
MMC1_RST#	0	eMMC Reset Signals
	V1P8S	Active low to reset.

Table 66. SDIO Signals

Signal Name	Direction Power	Description
SD2_CLK	0	SDIO Clock
	V1P8S	The frequency may vary between 24 and 50MHz.
SD2_D[2:0]	I/O	SDIO Port Data Bits 0 to 2
	V1P8S	Bidirectional port used to transfer data to and from SDIO device.
		By default, after power up or reset, only D[0] is used for data transfer. A wider data bus can be configured for data transfer, using D[0]-D[3].
SD2_D[3]_CD#	I/O V1P8S	SDIO Port Data bit 3 Bidirectional port used to transfer data to and from the SDIO device. Also, Card Detect. Active low when device is present.
SD2_CMD	I/O	SDIO Port Command
	V1P8S	This signal is used for card initialization and transfer of commands. It has two modes—open-drain for initialization, and push-pull for fast command transfer.

Table 67. SD Card Signals

Signal Name	Direction Power	Description
SD3_CLK	0	SD Card Clock
	VSDIO	The frequency may vary between 24 and 50 MHz.
SD3_D[3:0]	I/O	SD Card Data Bits 0 to 3
	VSDIO	Bidirectional port used to transfer data to and from SD card. By default, after power up or reset, only D[0] is used for data transfer. A wider data bus can be configured for data transfer, using D[0]-D[3].
SD3_CD#	I/O	SD Card Detect
	V1P8S	Active low when a card is present. Floating (pulled high with internal PU) when a card is not present.
SD3_CMD	I/O	SD Card Command
	VSDIO	This signal is used for card initialization and transfer of commands. It has two modes—open-drain for initialization, and push-pull for fast command transfer.
SD3_1P8EN	0	SD Card 1.8V Enable
	V1P8S	Indicates the voltage of the SD Card to the power delivery subsystem. The
		default voltage (3.3 V) is requested when this signal is driven low. 1.8 V is
		requested when this signal is high. This voltage change applies to the
		SD3_V1P8V3P3_S4 (VSDIO) rail on the SoC.
SD3_RCOMP	-	SD Card RCOMP
		This signal is used for pre-driver slew rate compensation.
SD3_PWREN#	0	SD Card Power Enable
	V1P8S	This signal is used to enable power on a SD device.

8.2 Features

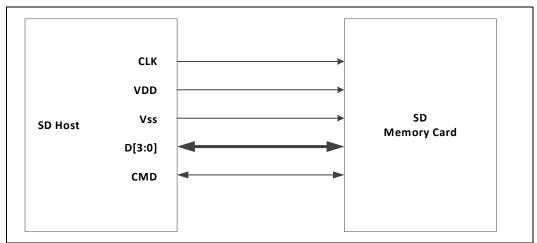
8.2.1 eMMC Interface Features

- eMMC 4.5 controller supported
- Transfers the data in 1 bit, 4 bit and 8 bit modes.
- Transfers data in the following speed classes: Baseline (1, 4, 8 bit up to 25Mhz), HS SDR/DDR (4, 8 bit up to 50Mhz) and HS200 (4, 8 bit up to 200MHz - 4.5 controller only)
- Cyclic Redundancy Check CRC7 for command and CRC16 for data integrity.
- Supports MMC Plus and MMC mobile.
- Supports both round-robin and priority-based arbitration for transmit operation.
- Run-time configurabilty of channel ID Bits.

8.2.2 SDIO/SD Card Interface Features

- Up to 832Mbits per second data rate using 4 parallel data lines.
- Transfers the data in 1 bit and 4 bit SD modes.
- Transfers the data in following UHS-I modes: HS and DDR50.
- Cyclic Redundancy Check CRC7 for command and CRC16 for data integrity.
- Designed to work with I/O cards, Read-only cards and Read/Write cards.
- Supports Read wait Control.

8.2.3 Storage Interfaces

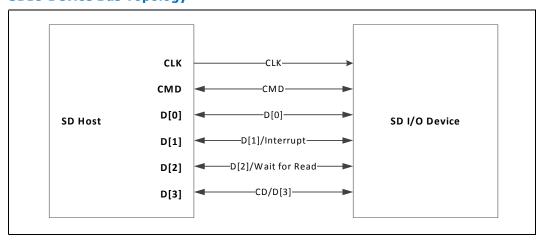

This section provides a very high level overview of the SD, SDIO, eMMC 4.5 specification.

8.2.3.1 SD Card 3.0 Bus Interface

The SD Card bus has a single master, single slaves (card), synchronous topology (refer to Figure 18). During initialization process commands are sent to the card, allowing the application to detect the card and assign logical addresses to the physical slot. All data communication in the Card Identification Mode uses the command line (CMD) only.

SD bus allows dynamic configuration of the number of data lines. After power up, by default, the SD Card will use only SD3_D[0] for data transfer. After initialization the host can change the bus width (number of active data lines). This feature allows easy trade off between hardware cost and system performance. Note that while DAT1-SD3_D[3:1] are not in use, the SoC will tri-state those signals.

Figure 18. SD Memory Card Bus Topology


8.2.3.2 SDIO 3.0 Interface

The SDIO interface is the very much like the SD card interface. The SoC supports one SDIO device.

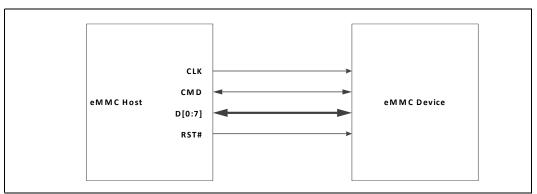

Note: SDIO interface does not support WAKE function.

Figure 19. SDIO Device Bus Topology

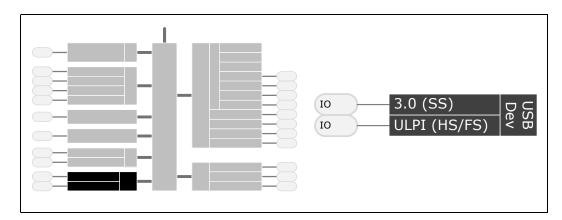
8.2.3.3 eMMC4.5 Interface

Figure 20. eMMC Interface

8.3 References

The controller is configured to comply with:

- SD Specification Part 01 Physical Layer Specification version 3.00, April 16, 2009
- SD Specification Part E1 SDIO Specification version 3.00, December 16, 2010
- SD Specification Part A2 SD Host Controller Standard Specification version 3.00, February 18, 2010
- SD Specification Part 03 security Specification version 1.01, April 15, 2001
- Embedded MultiMedia Card (eMMC) Product Standard v4.51, JESD84-A451


§

9 USB Device Controller Interfaces (3.0, ULPI)

The SoC implements a single USB 3.0 device controller, where the platform acts as a peripheral to another device or another PC.

The USB Device controller supports connections at Super Speed (3.0) on the USB3DEV interface, and High and Full speeds (2.0/1.x) on the ULPI interface. To support High and Full Speed devices on ULPI, an external PHY is required.

9.0.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- Direction: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 68. USB 3.0 Device Signals

Signal Name	Direction /Type	Description
USB3DEV_RXP/N[0]	I	Data In:
	USB 3.0	High speed serialized data inputs
USB3DEV_TXP/N[0]	0	Data Out:
	USB 3.0	High speed serialized data outputs.
USB3DEV_REXT[0]		Resistor Compensation:
		An external 1.24 KOhm +/-1% calibration resistor must be connected between this pin and package ground.

Table 69. USB ULPI Device Signals

Signal Name	Direction	Description
	/Type	
USB_ULPI_CLK	I	Interface Clock
		By default, control and data signals are synchronous to clock.
USB_ULPI_DATA[7:0]	I/O	Bi-directional data bus
		Driven low by the Link during idle. The Link starts a transfer by sending a non-zero pattern. The PHY must assert USB_ULPI_DIR before using the data bus. A turnaround cycle is required every time that USB_ULPI_DIR toggles.
USB_ULPI_DIR	I	Direction of the data bus
		By default, USB_ULPI_DIR is low and the PHY listens for non-zero data from the Link. The PHY asserts USB_ULPI_DIR to get control of the data bus.
USB_ULPI_NXT	I	Next Data
		The PHY drives USB_ULPI_NXT high to throttle the data bus
USB_ULPI_STP	0	Stop data
		The Link drives USB_ULPI_STP high to signal the end of its data stream. The Link can also drive USB_ULPI_STP high to request data bus access from the PHY
USB_ULPI_REFCLK	0	Reference clock
		ULPI reference clock for external PHY
USB_ULPI_RST#	0	Reset
		Used to reset the external PHY. Not part of ULPI specification. Optionally used by driver.

9.1 USB Device Controller

The USB device controller can control one USB 3.0 Device port. Either a combo SS + ULPI Device port, or UPLI only port. It supports hosts conforming to USB 3.0 at bit rates up to 5 Gbps on USB3DEV interface as well as USB 2.0 hosts at up to 480 Mbps via a PHY on ULPI.

9.1.1 Features

Features supported by the Device Controller include:

- Enumerable by both ACPI and PCI. The USB3 device subsystem is designed to appear to the OS as a true PCI device. It will also support ACPI-enumerated methods.
- Device controller registers and data structures are implemented as extensions to the EHCI programmers interface.
- Support for LPM (Link Power Management)

Some of the key features of the ULPI device controller are:

- Supports up to 8 endpoints when acting as device
- 8-bit data interface transmitted at 60 MHz ULPI clock

Note: Recommended not to disconnect the connection when a debug session is in progress.

9.1.2 Power Management Features

The USB 3.0 device subsystem supports the following device power states:

- D0: Functional and highest power state.
- D0i1: Hardware managed low power state in which clock gating is enabled
- RTD3 (D3): Software managed deepest low power state in which state is saved/ restored if needed prior to entry/exit
- D0i3: Power gated state—used when no host/device is attached or the link is in L2. This state is entered when the link is suspended by software.
 - —The external USB 2.0 PHY reference clock is gated.

9.1.2.1 D0

This is the Functional and highest power state. The USB 3.0 device subsystem is in this state when the USB link is in U0 (U0 is the normal operational state where packets can be transmitted and received).

9.1.2.2 D0i1

The D0i1 state is entered autonomously without intervention from software when the link is in the U1/U2 states (U1 is a low power state where no packets are to be transmitted and both ports agree to enter into a low power state. U2 is a link state where more power saving opportunities than U1, but with an increased exit latency).

Power consumption of the USB controller is lowered during entry into D0i1 by unit-level clock gating within the controller.

The controller automatically handles U1/U2 exits.

9.1.2.3 D3

D3 is a low power state that is used when the link is suspended; for example, U3 (U3 is a link state where a device is put into a suspend state. Significant link and device powers are saved).

This is a software directed state in which the controller is either power gated or the power is disabled.

9.1.3 Interrupts

A Functional Interrupt is generated by the logic in the USB device controller core to indicate the occurrence of an event needing application intervention. The design of the USB device core is such that events such as "link change" that would traditionally trigger an interrupt through an interrupt status register, are instead delivered to an 'Event buffer' in host memory, together with an interrupt indicating this.

9.2 References

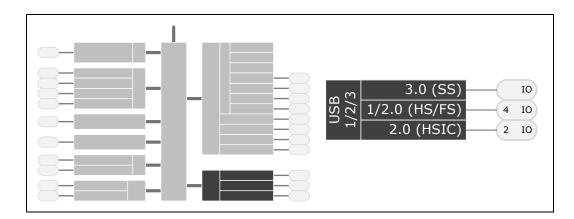
Universal Serial Bus (USB) 3.0 Revision Specification

Universal Serial Bus (USB) 2.0 Revision Specification

ULPI Working Group: http://www.ulpi.org/

ξ

10 USB Host Controller Interfaces (xHCI, EHCI)


The USB Host Controllers (xHCI, EHCI) supports:

- One (1) Super Speed (SS) port on xHCI
- Four (4) Full Speed (FS)/High Speed (HS) ports on xHCI or EHCI
- Two (2) High Speed (HS) High Speed Inter-Chip (HSIC) ports on xHCI

Note: The SS port must share a FS/HS port to have a full SS connector leaving three FS/HS

ports available.

Note: Only one host controller (xHCI or ECHI) can be used. To enable HSIC and SS ports, xHCI must be used.

10.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 70. USB 3 SS Signals

Signal Name	Direction /Type	Description
USB3_TXP/N[0]	O USB3	Data Out: High speed serialized data outputs. Used for debug mode in xHCI operation.
USB3_RXP/N[0]	I USB3	Data In: High speed serialized data inputs. Used for debug mode in xHCI operation.
USB3_REXT[0]	I Analog	Resistor Compensation: An external 1.24Kohm +/-1% calibration resistor must be connected between this pin and package ground.

Table 71. USB 2 FS/HS Signals

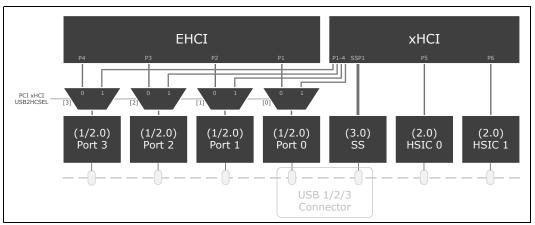

Signal Name	Direction /Type	Description
USB_DP/N[0:3]	I/O USB2	USB Data: High speed serialized data I/O.
		Note: USB_DP/N[1] used for debug mode in EHCI operation only. SS port must be implemented to have debug mode during xHCI operation.
USB_OC[0:1]#	I USB2	Over-Current Protection: Over-current notification for all USB ports (SS/FS/HS).
USB_RCOMPI	I Analog	Resistor Compensation: An external resistor must be connected.
USB_RCOMPO	O Analog	Resistor Compensation: An external resistor must be connected.

Table 72. USB 2 HSIC Signals

Signal Name	Direction /Type	Description
USB_HSIC[0:1]_DATA	I/O USB3	HSIC Data: High speed serialized data.
USB_HSIC[0:1]_STROBE	I/O USB3	HSIC Strobe: Strobe reference for data.
USB_HSIC_RCOMP	I Analog	Resistor Compensation: An external 50ohm resistor must be connected.

Figure 21. xHCI and EHCI Port Mapping

10.2 USB 3.0 xHCI (Extensible Host Controller Interface)

The xHCI compliant host controller can control up to 7 USB host ports. It supports devices conforming to USB 1.x to 3.0 at bit rates up to 5 Gbps.

10.2.1 Features of USB 3.0 Host

The USB 3.0 Super Speed data interface is a four wire differential (TX and RX pairs) interface that supports simultaneous bi-directional data transmission. The interface supports a bit rate of 5 Gbps with a maximum theoretical data throughput over 3.2 Gbps due to 8b/10b symbol encoding scheme and protocol overhead (link flow control, packet framing and protocol overhead).

Low Frequency Periodic signaling (LFPS) is used to communicate initialization, training and power management information across a link that is in low power link state without using Super Speed signaling. This reduces power consumption.

The USB3.0 port may be paired with any USB2 port at the connector – selection of any USB2 port other than port 0 will require the appropriate mapping. Figure 21 shows the USB3 port paired with USB2 port.

USB3.0 Controller Features

- Supported by xHCI software host controller interface
- USB3 port disable
- Supports local dynamic clock gating and trunk clock gating
- Supports USB 3.0 LPM (U0, U1, U2, and U3) and also a SS Disabled low power state

• Support for USB3 Debug Device

Note: Recommended not to disconnect the connection when a debug session is in progress.

10.2.2 USB HSIC Features

HSIC is a 2-signal (strobe and data) source synchronous serial interface for on board inter-chip USB communication. The interface uses 240 MHz DDR signaling to provide High-Speed 480 Mb/s USB transfers which are 100% host driver compatible with traditional USB cable connected topologies. Full Speed (FS) and Low Speed (LS) USB transfers are not directly supported by the HSIC interface.

For details of HSIC applications supported, contact local Intel Sales office.

Major feature and performance highlights are as follows:

- Supported by xHCI software host controller interface
- High-Speed 480 Mb/s data rate only
- Source-synchronous serial interface
- Interface Power is only consumed when a transfer is in progress
- No hot plug removal/attach at HSIC pins
- Signals driven at 1.2V standard LVCMOS levels
- Designed for low power applications
- Support for two host ports compliant to High Speed Inter-Chip Supplement (HSIC) to the USB 2.0 Specification. (USB 2.0)

10.3 USB 2.0 Enhanced Host Controller Interface (EHCI)

The EHCI compliant host controller supports up to 4 USB 2.0 ports in legacy mode. USB 2.0 allows data transfers up to 480 Mbps. The controller integrates a Root Matching Hub (RMH) to support USB 1.1 devices.

Note: The EHCI is not used when the xHCI is used. The EHCI is primarily present for legacy usage, in cases when xHCI support is not available.

Note: Unlike the xHCI, bandwidth of all four ports on the EHCI is shared across a single HS (480 Mbps) internal link.

10.3.1 EHCI USB 2.0 Controller Features

The EHCI USB2.0 Controller supports the following features:

- Compliant with the specification for: USB 1.x, 2.0 (1.5 Mbps, 12 Mbps, 480 Mbps).
- 4 Ports shared with xHCI controller
- Enhanced EHCI descriptor caching

- All ports provided through USB Rate Matching Hubs (RMH) to support FS/LS devices
- Supports one Debug port at USB2 transfer rates
- Supports of USB suspend mode including PLL turn off in S0/S0ix.
- Supports wakeup from suspend states S4/S5 and remote-suspend wakeup
- All USB2 ports provide support for HS/FS/LS devices
- Per port USB disable
- Supports local dynamic clock gating and trunk clock gating
- Supports USB 2.0 LPM (L0, L1 and L2 low power states)

10.4 References

USB 3.0 Specification

USB 2.0 Specification (Includes High-Speed Inter-Chip USB Electrical Specification)

10.4.1 Host Controller Specifications

Extensible Host Controller Interface (xHCI) Specification for USB 3.0 version 1.0

Enhanced Host Controller Interface (EHCI) Specification for USB 2.0

§

11 Integrated Clock

Clocks are integrated, consisting of multiple variable frequency clock domains, across different voltage domains. This architecture achieves a low power clocking solution that supports the various clocking requirements of the SoC's many interfaces.

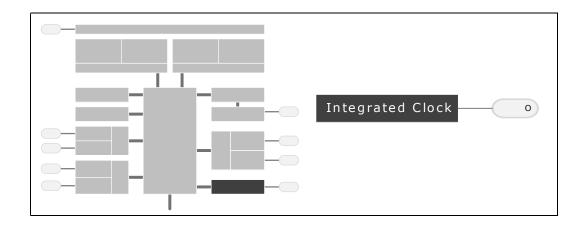
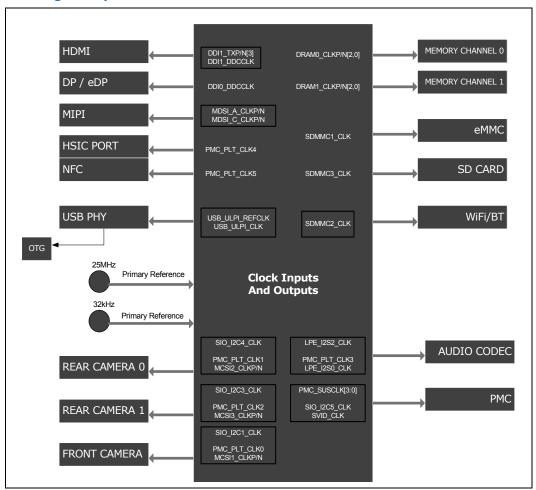



Figure 22. Clocking Example

11.1 Features

Platform clocking is provided internally by the Integrated Clock logic. No external clock chips are required for the SoC to function. All the required platform clocks are provided by two crystal inputs: a 25 MHz primary reference for the integrated clock block and a 32.768 kHz reference for the Real Time Clock (RTC) block.

The different inputs and outputs are listed below.

Table 73. SoC Clock Inputs

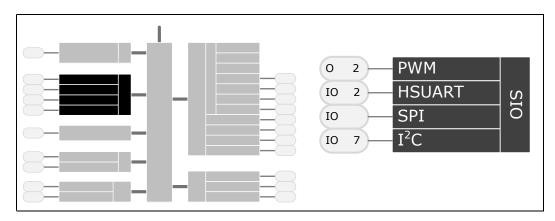
Clock Domain	Signal Name	Frequency	Usage/Description
Main	ICLK_OSCIN ICLK_OSCOUT	25 MHz	Reference crystal for the iCLK PLL
RTC	ILB_RTC_X1 ILB_RTC_X2	32.768 kHz	RTC crystal I/O for RTC block
MIPI CSI	MCSI1_CLKP/N MCSI2_CLKP/N MCSI3_CLKP/N	40-533 MHz	Clocks for cameras
LPC	ILB_LPC_CLK[1]	25 MHz	Can be configured as an input to compensate for board routing delays through Soft Strap.
USB PHY	USB_ULPI_CLK	60 MHz	Interface clock from ULPI PHY.

Table 74. SoC Clock Outputs (Sheet 1 of 2)

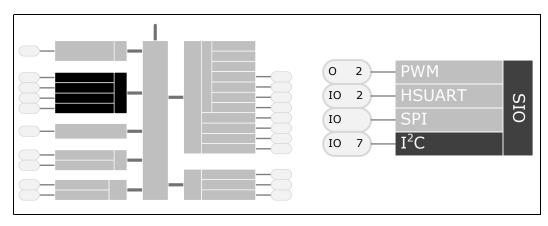
Clock Domain	Signal Name	Frequency	Usage/Description
Memory	DRAM0_CKP/N[2,0] DRAM1_CKP/N[2,0]	533 MHz	Drives the Memory ranks 0-1. Data rate (MT/s) is 2x the clock rate. Note: The frequency is fused in each SOC. It is not possible to support both frequencies on one SOC.
eMMC	MMC1_CLK	25-50 MHz	Clock for eMMC 4.41 devices
	MMC1_45_CLK	25-200 MHz	Clock for eMMC 4.51 devices
SDIO	SD2_CLK	25-50 MHz	Clock for SDIO devices
SD Card	SD3_CLK	25-50 MHz	Clock for SD card devices
SPI	PCU_SPI_CLK	20 MHz, 33 MHz, 50 MHz	Clock for SPI flash
PMIC/COMMS	PMC_SUSCLK[3:0]	32.768 kHz	Pass through clock from RTC oscillator
LPC	ILB_LPC_CLK[0:1]	25 MHz	Provided to devices requiring LPC clock
USB PHY	USB_ULPI_REFCLK	19.2 MHz	Clock for USB devices
HDMI	DDI[1:0]_TXP/N[3]	25-148.5 MHz	Differential clock for HDMI devices
HDMI DDC	DDI[1:0]_DDCCLK	100 kHz	Clock for HDMI DDC devices
MIPI DSI	MDSI_A_CLKP/N MDSI_C_CLKP/N	1067/800 MHz	Differential clock for MIPI DSI Devices
SVID	SVID_CLK	25 MHz	Clock used by voltage regulator
I ² S	LPE_I2S[2:0]_CLK	12.5 MHz	Continuous serial clock for I ² S interfaces

Table 74. SoC Clock Outputs (Sheet 2 of 2)

Clock Domain	Signal Name	Frequency	Usage/Description
Platform Clocks	PMC_PLT_CLK [5:0]	19.2/25 MHz	Platform clocks. For example: PLT_CLK [2:0] - Camera PLT_CLK [3] - Audio Codec PLT_CLK [4] - PLT_CLK [5] - COMMs
SIO SPI	SIO_SPI_CLK	15 MHz	SPI clock output
I ² C	SIO_I2C[6:0]_CLK	100 kHz, 400 kHz, 1 MHz, 3.4 MHz	I ² C clocks
NFC	NFC_I2C_CLK	100 kHz, 400 kHz	Clock for NFC device


§

12 Serial IO (SIO) Overview


The Serial I/O (SIO) is a collection of hardware blocks that implement simple but key serial I/O interfaces for platform usage. These hardware blocks include:

- SIO I²C Interface
- SIO Pulse Width Modulation (PWM)
- SIO Serial Peripheral Interface (SPI)
- SIO High Speed UART

12.1 SIO - I²C Interface

The SoC supports 7 instances of I^2C controller. Both 7-bit and 10-bit addressing modes are supported. These controllers operate in master mode only.

12.1.1 Signal Descriptions

 $\rm I^2C$ is a two-wire bus for inter-IC communication. Data and clock signals carry information between the connected devices. The following is the $\rm I^2C$ Interface. The SoC supports 7 $\rm I^2C$ interfaces for general purpose to control external devices. The $\rm I^2C$ signals are muxed over GPIOs.

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- Signal Name: The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 75. I²C[6:0] Signals

Signal Name	Direction /Type	Description
SIO_I2C[6:0]_DATA	I/O CMOS1.8	I ² C Serial Data These signals are muxed and may be used by other functions.
SIO_12C[6:0]_CLK	I/O CMOS1.8	I ² C Serial Clock These signals are muxed and may be used by other functions.

12.1.2 Features

12.1.2.1 I²C Protocol

The I²C bus is a two-wire serial interface, consisting of a serial data line and a serial clock. These wires carry information between the devices connected to the bus. Each device is recognized by a unique address and can operate as either a "transmitter" or "receiver," depending on the function of the device. Devices are considered slaves when performing data transfers, as the SoC will always be a Master. A master is a device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

- The SoC is always the I²C master; and it supports multi-master mode.
- The SoC can support clock stretching by slave devices.
- The SIO_I2Cx_DATA line is a bidirectional signal and changes only while the SIO_I2Cx_CLK line is low, except for STOP, START, and RESTART conditions.
- The output drivers are open-drain or open-collector to perform wire-AND functions on the bus.
- The maximum number of devices on the bus is limited by the maximum capacitance specification of 400 pF
- Refer to Chapter 29, "Electrical Specifications" for details.

Data is transmitted in byte packages.

12.1.2.2 I²C Modes of Operation

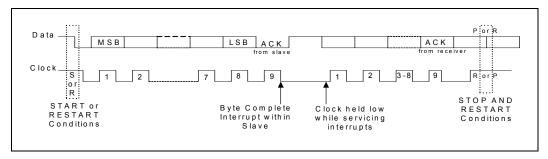
The I²C module can operate in the following modes:

- Standard mode (with a bit rate up to 100 Kb/s)
- Fast mode (with a bit rate up to 400 Kb/s)
- Fast-mode Plus (Fm+, with a bit rate up to 1 Mb/s)
- High-speed mode (Hs-mode, with a bit rate up to 3.4 Mb/s)

The I^2C can communicate with devices only using these modes as long as they are attached to the bus. Additionally, high speed mode, fast mode plus and fast mode devices are downward compatible.

- High-speed mode devices can communicate with fast mode and standard mode devices in a mixed speed bus system.
- ullet Fast mode devices can communicate with standard mode devices in a 0–100 Kb/s I^2C bus system.

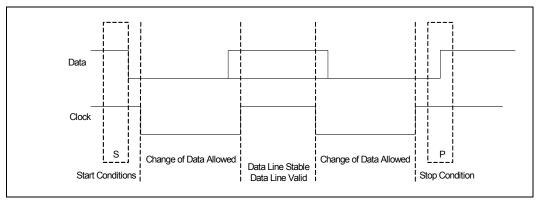
However, according to the I^2C specification, standard mode devices are not upward compatible and should not be incorporated in a fast-mode I^2C bus system since they cannot follow the higher transfer rate and unpredictable states would occur.


12.1.2.3 Functional Description

- The I²C master is responsible for generating the clock and controlling the transfer of data.
- The slave is responsible for either transmitting or receiving data to/from the master.
- The acknowledgement of data is sent by the device that is receiving data, which can be either a master or a slave.
- Each slave has a unique address that is determined by the system designer:
 - When a master wants to communicate with a slave, the master transmits a START/RESTART condition that is then followed by the slave's address and a control bit (R/W), to determine if the master wants to transmit data or receive data from the slave.
 - $-\,$ The slave then sends an acknowledge (ACK) pulse after the address.
- If the master (master-transmitter) is writing to the slave (slave-receiver)
 - The receiver gets one byte of data.
 - This transaction continues until the master terminates the transmission with a STOP condition.
- If the master is reading from a slave (master-receiver)
 - The slave transmits (slave-transmitter) a byte of data to the master, and the master then acknowledges the transaction with the ACK pulse.

 This transaction continues until the master terminates the transmission by not acknowledging (NACK) the transaction after the last byte is received, and then the master issues a STOP condition or addresses another slave after issuing a RESTART condition. This behavior is illustrated in below figure.

Figure 23. Data Transfer on the I²C Bus


START and STOP Conditions

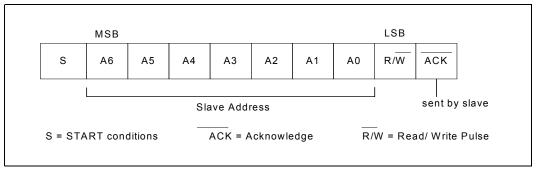
When the bus is idle, both the clock and data signals are pulled high through external pull-up resistors on the bus.

When the master wants to start a transmission on the bus, the master issues a START condition.

- This is defined to be a high-to-low transition of the data signal while the clock is high.
- When the master wants to terminate the transmission, the master issues a STOP condition. This is defined to be a low-to-high transition of the data line while the clock is high. Figure 24 shows the timing of the START and STOP conditions.
- When data is being transmitted on the bus, the data line must be stable when the clock is high.

Figure 24. START and STOP Conditions

The signal transitions for the START/STOP conditions, as depicted above, reflect those observed at the output of the master driving the I^2C bus. Care should be taken when observing the data/clock signals at the input of the slave(s), because unequal line delays may result in an incorrect data/clock timing relationship.


Addressing Slave Protocol

There are two address formats—seven-bit address format and 10-bit address format.

• Seven-bit Address Format

- During the seven-bit address format, the first seven bits (bits 7:1) of the first byte set the slave address and the LSB bit (bit 0) is the R/W bit as shown in Figure 25.
- When bit 0 (R/W) is set to 0, the master writes to the slave. When bit 0 (R/W) is set to 1, the master reads from the slave.

Figure 25. Seven-Bit Address Format

- Ten-bit Address Format
 - During 10-bit addressing, 2 bytes are transferred to set the 10-bit address. The transfer of the first byte contains the following bit definition.
 - The first five bits (bits 7:3) notify the slaves that this is a 10-bit transfer. The next two bits (bits 2:1) set the slaves address bits 9:8, and the LSB bit (bit 0) is the RW bit.
 - The second byte transferred sets bits 7:0 of the slave address.
 - Figure 26 shows the 10-bit address format, and Table 76 defines the special purpose and reserved first byte addresses.

Figure 26. Ten-Bit Address Format

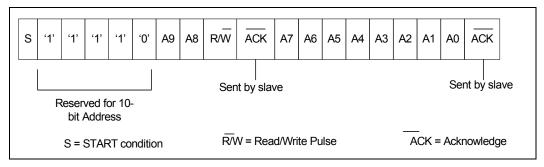
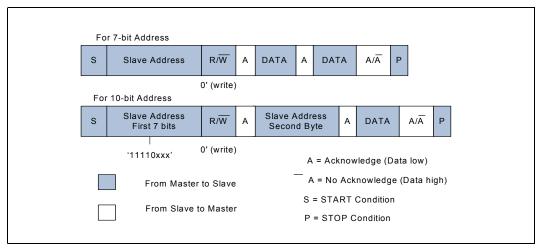


Table 76. I²C Definition of Bits in First Byte

Slave Address	RW Bit	Description	
0000 000	0	General Call Address —The I ² C controller places the data in the receive buffer and issues a General Call interrupt.	
0000 000	1	START byte —For more details, refer to I ² C bus specification.	
0000 001	Х	CBUS address —I ² C controller ignores these accesses.	
0000 010	Х	Reserved	
0000 011	Х	Reserved	
0000 1XX	Х	High-speed master code	
1111 1XX	Х	Reserved	
1111 0XX	Х	Ten (10)-bit slave addressing	

Transmit and Receive Protocol

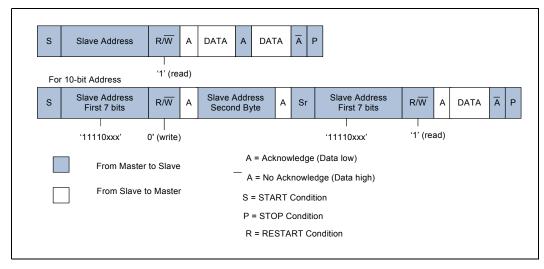
The master can initiate data transmission and reception to/from the bus, acting as either a master-transmitter or master-receiver. A slave responds to requests from the master by either transmitting data or receiving data to/from the bus, acting as either a slave-transmitter or slave-receiver, respectively.


• Master-Transmitter and Slave-Receiver

All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer. After the master sends the address and RW bit or the master transmits a byte of data to the slave, the slave-receiver must respond with the acknowledge signal (ACK). When a slave-receiver does not respond with an ACK pulse, the master aborts the transfer by issuing a STOP condition. The slave must leave the data line high so that the master can abort the transfer.

If the master-transmitter is transmitting data as shown in Figure 27, then the slave-receiver responds to the master-transmitter with an acknowledge pulse after every byte of data is received.

Figure 27. Master Transmitter Protocol

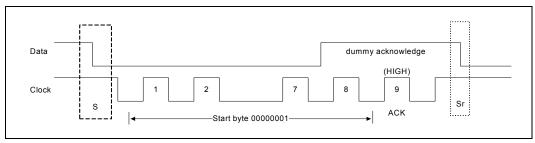


• Master-Receiver and Slave-Transmitter

If the master is receiving data as shown in Figure 28, the master responds to the Slave-Transmitter with an acknowledge pulse after a byte of data has been received, except for the last byte. This is the way the Master-Receiver notifies the Slave-Transmitter that this is the last byte. The Slave-Transmitter relinquishes the data line after detecting the No Acknowledge (NACK) so that the master can issue a STOP condition.

When a master does not want to relinquish the bus with a STOP condition, the master can issue a RESTART condition. This is identical to a START condition except it occurs after the ACK pulse. The master can then communicate with the same slave or a different slave.

Figure 28. Master Receiver Protocol



START BYTE Transfer Protocol

The START BYTE Transfer protocol is set up for systems that do not have an on-board dedicated I^2C hardware module. When the I^2C controller is a master, it supports the generation of START BYTE transfers at the beginning of every transfer in case a slave device requires it. This protocol consists of 7 '0's being transmitted followed by a 1, as illustrated in Figure 29. This allows the processor that is polling the bus to undersample the address phase until 0s are detected. Once the microcontroller detects a 0, it switches from the under sampling rate to the correct rate of the master.

Figure 29. START Byte Transfer

The START BYTE procedure is as follows:

- 1. Master generates a START condition.
- 2. Master transmits the START byte (0000 0001).
- 3. Master transmits the ACK clock pulse. (Present only to conform with the byte handling format used on the bus.)
- 4. No slave sets the ACK signal to 0.
- 5. Master generates a RESTART (R) condition.

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets after the RESTART condition is generated.

12.1.3 Use

12.1.3.1 Master Mode Operation

To use the I²C controller as a master, perform the following steps:

- 1. Disable the I²C controller by writing 0 (zero) to IC_ENABLE.ENABLE.
- Write to the IC_CON register to set the maximum speed mode supported for slave operation IC_CON.SPEED and to specify whether the I²C controller starts its transfers in 7/10 bit addressing mode when the device is a slave (IC_CON.IC_10BITADDR_SLAVE).
- 3. Write to the IC_TAR register the address of the I²C device to be addressed. It also indicates whether a General Call or a START BYTE command is going to be performed by I²C. The desired speed of the I²C controller master-initiated

transfers, either 7-bit or 10-bit addressing, is controlled by the IC_TAR.IC_10BITADDR_MASTER bit field.

- 4. Write to the IC_HS_MADDR register the desired master code for the I²C controller. The master code is programmer-defined.
- 5. Enable the I²C controller by writing a 1 in IC_ENABLE.
- 6. Now write the transfer direction and data to be sent to the IC_DATA_CMD register. If the IC_DATA_CMD register is written before the I²C controller is enabled, the data and commands are lost as the buffers are kept cleared when the I²C controller is not enabled.

The I^2C controller supports dynamic updating of the $IC_TAR.IC_TAR$ and $IC_TAR.IC_10BITADDR_MASTER$. The IC_TAR register can be dynamically written to provided the following conditions are met:

• The I²C controller is not enabled (IC_ENABLE.ENABLE=0)

OR

 The I²C controller is enabled (IC_ENABLE.ENABLE=1); AND the I²C controller is NOT engaged in any Master (tx, rx) operation (IC_STATUS.MST_ACTIVITY=0); AND the I²C controller is enabled to operate in Master mode (IC_CON.MASTER_MODE=1); AND there are NO entries in the TX FIFO (IC_STATUS.TFE=1)

The I^2C controller supports switching back and forth between reading and writing dynamically. To transmit data, write the data to be written to the lower byte of the I^2C Rx/Tx Data Buffer and Command Register (IC_DATA_CMD). The IC_DATA_CMD.CMD should be written to 0 for I^2C write operations. Subsequently, a read command may be issued by writing "don't cares" to IC_DATA_CMD.DAT register bits, and a 1 should be written to the IC_DATA_CMD.CMD bit.

12.1.3.2 Disabling the I²C Controller

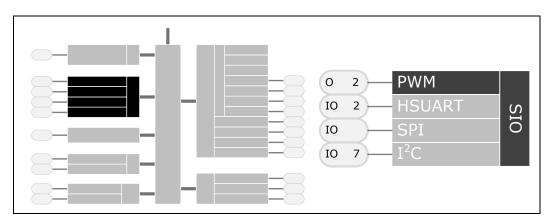
The register IC_ENABLE allows software to unambiguously determine when the hardware has completely shutdown in response to the IC_ENABLE.ENABLE register being cleared from 1 to 0.

Procedure

- 1. Define a timer interval (t_{i2c_poll}) equal to 10 times the signaling period for the highest I^2C transfer speed used in the system and supported by the I^2C controller. For example, if the highest I^2C transfer mode is 400Kb/s, then this t_{i2c_poll} is 25 μ s.
- 2. Define a maximum time-out parameter, MAX_T_POLL_COUNT, such that if any repeated polling operation exceeds this maximum value, an error is reported.
- 3. Execute a blocking thread/process/function that prevents any further I²C master transactions to be started by software, but allows any pending transfers to be completed.
- 4. The variable POLL COUNT is initialized to zero (0).

- 5. Clear IC_ENABLE.ENABLE to zero (0).
- 6. Read the IC_ENABLE_STATUS.IC_EN bit. Increment POLL_COUNT by one. If POLL_COUNT >= MAX_T_POLL_COUNT, exit with the relevant error code.
- 7. If IC_ENABLE_STATUS.IC_EN is 1, then sleep for t_{i2c_poll} and proceed to the previous step. Otherwise, exit with a relevant success code.

12.1.3.3 Clock Stretching


The I²C controllers do not support clock stretching.

12.1.4 References

I²C-Bus Specification and User Manual, Revision 03: http://ics.nxp.com/support/documents/interface/pdf/i2c.bus.specification.pdf.

12.2 SIO - Pulse Width Modulation (PWM)

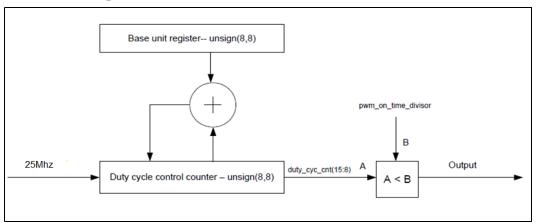
The Pulse Width Modulation block allows control the frequency and duty cycle of an output signal. The SoC has 2 instances of the PWM interface.

12.2.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- Direction: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function


Table 77. PWM Signals

Signal Name	Direction /Type	Description
SIO_PWM[0]	0	Pulse Width Modulation output 0.
SIO_PWM[1]	0	Pulse Width Modulation output 1.

12.2.2 Features

The software controls the PWM block by updating the PWMCTRL register and setting the PWMCTRL.PWM_SW_UPDATE bit whenever a change in frequency or duty cycle of the PWM output signal is required. The PWM block applies the new settings at the start of the next output cycle and resets the PWMCTRL.PWM_SW_UPDATE bit. The SoC uses 25 MHz for the counter. Refer Figure 30 for PWM block diagram:

Figure 30. PWM Block Diagram

There are two controls of the PWM output:

- Frequency is controlled by the PWMCTRL.PWM_BASE_UNIT bits. The PWMCTRL.PWM_BASE_UNIT value is added to a 16 bit counter every clock cycle and the counter roll-over marks the start of a new cycle.
- **Duty cycle** is controlled by the PWMCTRL.PWM_ON_TIME_DIVISOR setting (0 to 255). When the counter rolls-over it is reset and a new cycle starts with the output signal being 0, once the counter reaches the PWMCTRL.PWM_ON_TIME_DIVISOR value the output toggles to 1 and stays high until the counter rolls over.

The PWM block is clocked by the 25 MHz oscillator clock. The output frequency can be estimated with the equation:

Target frequency = 25MHz * base_unit value/256
 Note that the larger the value of base_unit, the larger the error that the PWM output frequency will have with respect to the equation above. For example any

Base_unit_value > 128 will result in 12.5 MHz max frequency. Any value between 86 and 128 will result in 8.33 MHz output frequency. And accordingly the larger the base_unit value the smaller duty cycle resolution. Maximum duty cycle resolution is 8 bits.

Table 78 illustrates the output frequency and duty-cycle resolution for different settings of the base_unit_value (when using 25 MHz oscillator clock).

Table 78. Example PWM Output Frequency and Resolution

Target Frequency	Base Unit Value	CLK Cycle Count	Duty Cycle Resolution
12.5 MHz	>=128	1	no resolution
1.07 MHz	11	23	<8 bit resolution
488 kHz	5	51	<8 bit resolution
97.6 kHz	1	256	8 resolution
48.8 kHz	0.5	Theoretically 512 but only 255 available since On Time Divisor is only 8b	>8bit
0	0	0	Flat 0 output

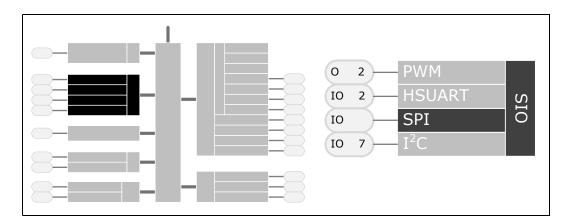
12.2.3 Use

12.2.3.1 PWM Programming Sequence

For first time activation, follow sequence:

- 1. Program the counter value PWMCTRL.PWM_BASE_UNIT and PWMCTRL.PWM_ON_TIME_DIVISOR
- 2. Set the PWMCTRL.PWM_SW_UPDATE bit
- 3. Enable PWM output by setting the PWMCTRL.PWM_ENABLE bit

For update on the fly, follow sequence:


- 1. Program the counter value PWMCTRL.PWM_BASE_UNIT and PWMCTRL.PWM_ON_TIME_DIVISOR
- 2. Set the update bit PWMCTRL.PWM_SW_UPDATE

12.3 SIO - Serial Peripheral Interface (SPI)

The Serial I/O implements one SPI controller that supports master mode.

Note: This SPI controller does not support platform firmware (BIOS). See the SPI controller in the PCU instead.

12.3.1 Signal Descriptions

See Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Platform Power: The reference power plane.
- **Description**: A brief explanation of the signal's function

Figure 31. SPI Interface Signals

Signal Name	Direction Plat. Power	Description
SIO_SPI_CLK	I/O	SPI Serial Clock
	V1P8S	
SIO_SPI_CS#	I/O	SPI Chip Select
	V1P8S	SPI Chip Select is active low.
SIO_SPI_MOSI	0	SPI Master Output Slave Input
	V1P8S	
SIO_SPI_MISO	I	SPI Slave Output Master Input
	V1P8S	

12.3.2 Features

The following is a list of SPI features:

- Single interrupt line
 - Could be assigned to interrupt PCI INT [A] or ACPISIO INT[1]
- Configurable frame format, clock polarity and clock phase
- supporting one SPI peripheral only

- Supports master mode only
- Receive and transit buffers are both 256x32bits
 - The receive buffer has only 1 water mark
 - The transmit buffer has 2 water marks
- Supports up to 15 Mbps

12.3.2.1 Clock Phase and Polarity

SPI clock phase and clock polarity overview.

- The SSCR1.SPO polarity setting bit determines whether the serial transfer occurs on the rising edge of the clock or the falling edge of the clock.
 - When SSCR1.SPO = 0, the inactive or idle state of SIO_SPI_CLK is low.
 - When SSCR1.SPO = 1, the inactive or idle state of SIO_SPI_CLK is high.
- The SSCR1.SPH phase setting bit selects the relationship of the serial clock with the slave select signal.
 - When SSCR1.SPH = 0, SIO_SPI_CLK is inactive until one cycle after the start of a frame and active until 1/2 cycle after the end of a frame.
 - When SSCR1.SPH = 1, SIO_SPI_CLK is inactive until 1/2 cycle after the start of a frame and active until one cycle after the end of a frame.

Below figure shows an 8-bit data transfer with different phase and polarity settings.

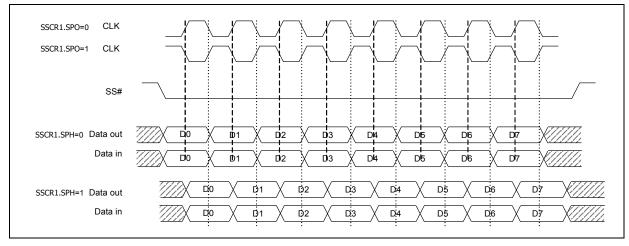


Figure 32. Clock Phase and Polarity

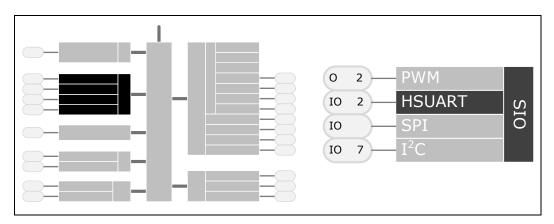
• In a single frame transfer, the SPI controller supports all four possible combinations for the serial clock phase and polarity.

12.3.2.2 Mode Numbers

The combinations of polarity and phases are referred to as modes which are commonly numbered according to the following convention, with SSCR1.SPO as the high order bit and SSCR1.SPH as the low order bit.

Table 79. SPI Modes

Mode	SSCR1.SPO	SSCR1.SPH
0	0	0
1	0	1
2	1	0
3	1	1


12.3.2.3 Frame Direction

The SSCR1.SFRMDIR bit is a read-write bit that determines whether the SSP is the master or slave with respect to driving the SSPSFRM. When SSCR1.SFRMDIR=0, the SSP generates the SSPSFRM internally, acts as the master and drives it. When SSCR1.SFRMDIR=1, the SSP acts as the slave and receives the SSPSFRM signal from an external device. When the SSP is to be configured as a slave to the frame, the external device driving frame must wait until the SSSR.CSS bit is cleared after enabling the SSP before asserting frame (i.e. not external clock cycles are needed, the external device just needs to wait a certain amount of time before asserting frame). When the GPIO alternate function is selected for the SSP, this bit has precedence over the GPIO direction bit (i.e. if SFRMDIR=1, the GPIO is an input, and if SFRMDIR=0, then the pin is an output). Therefore, the SCLKDIR and SFRMDIR bits should be written to before the GPIO direction bits (to prevent any possible contention of the SSPSCLK or SSPSFRM pins). Also, when the SCLKDIR bit is set, the SSCR0.NCS and SSCR0.ECS bits must be cleared.

12.4 SIO - High Speed UART

The SoC implements two instances of high speed UART controller that support baud rates between 300 and 3686400. Hardware flow control is also supported.

12.4.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

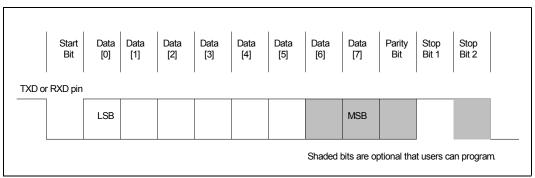
- Signal Name: The name of the signal/pin
- Direction: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 80. UART 1 Interface Signals

Signal Name	Direction /Type	Description	
SIO_UART1_RXD	I	High-speed UART receive data input: This signal is muxed and may be used by other functions.	
SIO_UART1_TXD	0	High-speed UART transmit data: This signal is muxed and may be used by other functions.	
SIO_UART1_RTS#	0	High-speed UART request to send: This signal is muxed and may be used by other functions.	
SIO_UART1_CTS#	I	High-speed UART clear to send: This signal is muxed and may be used by other functions.	

Table 81. UART 2 Interface Signals

Signal Name	Direction /Type	Description
SIO_UART2_RXD	I	High-speed UART receive data input: This signal is muxed and may be used by other functions.
SIO_UART2_TXD	0	High-speed UART transmit data: This signal is muxed and may be used by other functions.
SIO_UART2_RTS#	0	High-speed UART request to send: This signal is muxed and may be used by other functions.
SIO_UART2_CTS#	I	High-speed UART clear to send: This signal is muxed and may be used by other functions.


12.4.2 Features

12.4.2.1 UART Function

The UART transmits and receives data in bit frames as shown in Figure 33.

- Each data frame is between 7 and 12 bits long, depending on the size of data programmed and if parity and stop bits are enabled.
- The frame begins with a start bit that is represented by a high-to-low transition.
- Next, 5 to 8 bits of data are transmitted, beginning with the least significant bit. An
 optional parity bit follows, which is set if even parity is enabled and an odd number
 of ones exist within the data byte; or, if odd parity is enabled and the data byte
 contains an even number of ones.
- The data frame ends with one, one-and-one-half, or two stop bits (as programmed by users), which is represented by one or two successive bit periods of a logic one.

Figure 33. UART Data Transfer Flow

Each UART has a Transmit FIFO and a Receive FIFO and each holds 64 characters of data. There are two separate methods for moving data into/out of the FIFOs—Interrupts and Polling.

12.4.2.2 Clock and Reset

The BAUD rate generates from base frequency of 50 MHz.

12.4.2.3 Baud Rate Generator

The baud rates for the UARTs are generated with from the base frequency (Fbase) indicated in Table 82 by programming the DLH and DLL registers as divisor. The hexadecimal value of the divisor is (IER_DLH[7:0]<<8) | RBR_THR_DLL[7:0].

Fbase 44236800 Hz can be achieved by programming the DDS Multiplier as 44,236,800 (in decimal), and DDS Divisor as the system clock frequency in Hz. (50,000,000 in decimal when the system clock frequency is 50 MHz.)

The output baud rate 3686400 is equal to the base frequency divided by thirteen times the value of the divisor, as follows: baud rate = (Fbase) / (13 * divisor). The output baud rate for all other baud rates is equal to the base frequency divided by sixteen times the value of the divisor, as follows: baud rate = (Fbase) / (16 * divisor).

Table 82. Baud Rates Achievable with Different DLAB Settings

DLH,DLL Divisor	DLH,DLL Divisor Hexadecimal	Baud Rate				
	Fbase 1: 47923200 Hz					
1	0001	3686400				
	Fbase 2: 44236800 Hz					
1	0001	2764800				
3	0003	921600				
6	0006	460800				
9	0009	307200				
12	000C	230400				
15	000F	184320				
18	0012	153600				
24	0018	115200				
48	0030	57600				
72	0048	38400				
144	0090	19200				
288	0120	9600				
384	0180	7200				
576	0240	4800				
768	0300	3600				
1152	0480	2400				
1536	0600	1800				
2304	0900	1200				
4608	1200	600				
9216	2400	300				

12.4.3 Use

Each UART has a transmit FIFO and a receive FIFO, each FIFO holding 64 characters of data. Three separate methods move data into and out of the FIFOs: interrupts, DMA, and polled.

12.4.3.1 DMA Mode Operation

Receiver DMA

The data transfer from the HSUART to host memory is controlled by the DMA write channel. To configure the channel in write mode, channel direction in the channel control register needs to be programmed to "1". The software need to program the descriptor start address register, descriptor transfer size register, and descriptor control register before starting the channel using the channel active bit in the channel control register.

Transmit DMA

The data transfer from host memory to HSUART is controlled by DMA read channel. To configure the channel in read mode, channel direction in the channel control register needs to be programmed to "0". The software need to program the descriptor start address register, descriptor transfer size register, and descriptor control register before starting the channel using the channel active bit in the channel control register.

Removing Trailing Bytes in DMA Mode

When the number of entries in the Receive FIFO is less than its trigger level, and no additional data is received, the remaining bytes are called Trailing bytes. These are DMAed out by the DMA as it has visibility into the FIFO Occupancy register.

12.4.3.2 FIFO Polled-Mode Operation

With the FIFOs enabled (IIR_FCR.IID0_FIFOE bit set to 1), clearing IER_DLH[7] and IER_DLH[4:0] puts the serial port in the FIFO Polled Operation mode. Because the receiver and the transmitter are controlled separately, either one or both can be in Polled Operation mode. In this mode, software checks Receiver and Transmitter status using the Line Status Register (LSR). The processor polls the following bits for Receive and Transmit Data Service.

Receive Data Service

The processor checks data ready (LSR.DR) bit which is set when 1 or more bytes remains in the Receive FIFO or Receive Buffer Register (RBR_THR_DLL).

Transmit Data Service

The processor checks transmit data request LSR.THRE bit, which is set when the transmitter needs data.

The processor can also check transmitter empty LSR.TEMT, which is set when the Transmit FIFO or Holding register is empty.

Autoflow Control

Autoflow Control uses Clear-to-Send (nCTS) and Request-to-Send (nRTS) signals to automatically control the flow of data between the UART and external modem. When autoflow is enabled, the remote device is not allowed to send data unless the UART asserts nRTS low. If the UART de-asserts nRTS while the remote device is sending data, the remote device is allowed to send one additional byte after nRTS is deasserted. An overflow could occur if the remote device violates this rule. Likewise, the UART is not allowed to transmit data unless the remote device asserts nCTS low. This feature increases system efficiency and eliminates the possibility of a Receive FIFO Overflow error due to long interrupt latency.

Autoflow mode can be used in two ways: Full autoflow, automating both nCTS and nRTS, and half autoflow, automating only nCTS. Full Autoflow is enabled by writing a 1 to bits 1 and 5 of the Modem Control Register (MCR). Auto-nCTS-Only mode is enabled by writing a 1 to bit 5 and a 0 to bit 1 of the MCR register.

RTS (UART Output)

When in full autoflow mode, nRTS is asserted when the UART FIFO is ready to receive data from the remote transmitter. This occurs when the amount of data in the Receive FIFO is below the programmable threshold value. When the amount of data in the Receive FIFO reaches the programmable threshold, nRTS is de-asserted. It will be asserted once again when enough bytes are removed from the FIFO to lower the data level below the threshold.

CTS (UART Input)

When in Full or Half-Autoflow mode, nCTS is asserted by the remote receiver when the receiver is ready to receive data from the UART. The UART checks nCTS before sending the next byte of data and will not transmit the byte until nCTS is low. If nCTS goes high while the transfer of a byte is in progress, the transmitter will complete this byte.

ξ

13 Intel[®] Trusted Execution Engine (Intel[®] TXE)

This section describes the security components and capabilities. The security system contains an Intel[®] TXE and additional hardware security feature that enable a secure and robust platform.

13.1 Features

13.1.1 Security Feature

The Intel® TXE in the SoC is responsible for supporting and handling security related features.

Intel® TXE features:

- 32-bit RISC processor
- 256KB Data/Code RAM accessible only to the Intel® TXE
- 128KB On Chip Mask ROM for storage of Intel® TXE code
- \bullet Inter-Processor Communication for message passing between the Host CPU and Intel $^{\! B}$ TXE
- 64 byte input and output command buffers
- 256 byte shared payload (enables 2048-bit keys to be exchanged as part of the command)
- Multiple context DMA engine to transfer data between Host CPU address domain (System memory) and the Intel® TXE; programmable by the Intel® TXE CPU only.
- Secure I²C interface to NFC using master I²C block integrated into the Intel TXE -IP. Auxiliary GPIOs to support input alert and two GP Outputs.

13.1.1.1 HW Accelerators

- DES/3DES (ECB, CBC) 128b ABA key for 3DES Key Ladder Operations
- Three AES engines Two fast -128 and one slow- 128/256
- Exponentiation Acceleration Unit (EAU) for modular exponentiation, modular reduction, large number addition, subtraction, and multiplication
- SHA1, SHA256/384/512, MD5

13.1.1.2 FW Utilities and Ciphers

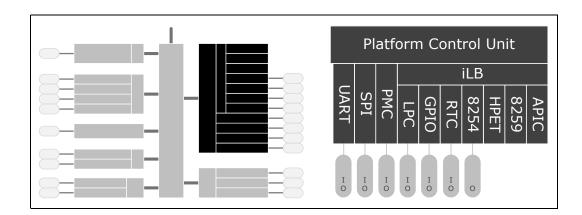
- RSA (with EAU acceleration)
- Flash Write Enable/Disable

- Comprehensive IPC Command Set
- Chip Unique Key encryption key wrapping of other platform keys (Flash)

13.1.1.3 Downloadable FW Utilities and Ciphers

- ullet Integrated Theft Deterrence Technology Intel $^\circledR$ Anti-Theft Technology (Intel $^\circledR$ AT)
- One Time Programmable (OTP)
- Firmware TPM (fTPM) measured boot

§



14 Platform Controller Unit (PCU) Overview

The Platform Controller Unit (PCU) is a collection of HW blocks that are critical for implementing a Windows* compatible platform. These HW blocks include:

- PCU Power Management Controller (PMC)
- PCU Serial Peripheral Interface (SPI)
 - For boot FW and system configuration data Flash storage
- PCU Universal Asynchronous Receiver/Transmitter (UART)
- PCU Intel Legacy Block (iLB) Overview

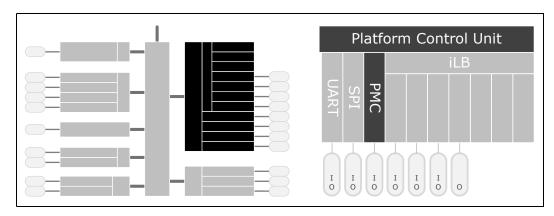
The PCU also implements some high level configuration features for BIOS/EFI boot.

14.1 Features

The key features of the individual blocks are as follows:

- Universal Asynchronous Receiver/Transmitter (UART)
 - 16550 controller compliant
 - Reduced Signal Count: TX and RX only
 - COM1 interface
- Serial Peripheral Interface (SPI)
 - For one or two SPI Flash, of up to 16MB size each, only. No other SPI peripherals are supported.
 - Stores boot FW and system configuration data
 - Supports frequencies of 20 MHz, 33MHz and 50MHz.

Platform Controller Unit (PCU) Overview


- Power Management Controller (PMC)
 - $\boldsymbol{-}$ Controls many of the power management features present in the SoC.
- Intel Legacy Block (iLB)
 - Supports legacy PC platform features
 - $-\,$ Sub-blocks include LPC, GPIO, 8259 PIC, IO-APIC, 8254 timers, HPET timers and the RTC.

§

15 PCU - Power Management Controller (PMC)

The Power Management Controller (PMC) controls many of the power management features present in the SoC.

15.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 83. PMC Signals (Sheet 1 of 3)

Signal Name	Direction /Type	Description
PMC_ACPRESENT	I CMOS	AC Present: This input pin indicates when the platform is plugged into AC power.
PMC_BATLOW#	I CMOS	Battery Low: An input from the battery to indicate that there is insufficient power to boot the system. Assertion will prevent wake from the S4/S5 state. This signal can also be enabled to cause an SMI# when asserted. In desktop configurations without a battery, this signal should be tied high to V1P8_S5.

Table 83. PMC Signals (Sheet 2 of 3)

		·	
Signal Name	Direction /Type	Description	
PMC_CORE_PWROK	I CMOS	Core Power OK: When asserted, this signal is an indication to the SoC that all of its core power rails have been stable for 10 ms. It can be driven asynchronously. When it is negated, the SoC asserts PMC_PLTRST#. NOTE: PMC_CORE_PWROK must not glitch, even if PMC_RSMRST# is low.	
PMC_PLTRST#	O CMOS	Platform Reset: The SoC asserts this signal to reset devices on the platform. The SoC asserts the signal during power-up and when software initiates a hard reset sequence through the Reset Control (RST_CNT) register.	
PMC_PWRBTN#	I CMOS	Power Button: The signal will cause SMI# or SCI to indicate a system request to go to a sleep state. If the system is already in a sleep state, this signal will cause a wake event. If the signal is pressed for more than 4 seconds, this will cause an unconditional transition (power button override) to the S5 state. Override will occur even if the system is in the S4 states. This signal has an internal pull-up resistor and has an internal 16 ms de-bounce on the input.	
PMC_RSMRST#	I CMOS	Resume Well Reset: Used for resetting the resume well. An external RC circuit is required to guarantee that the resume well power is valid prior to this signal going high.	
PMC_RSTBTN#	I CMOS	System Reset: This signal forces an internal reset after being debounced (~16ms). This signal is muxed and may be used by other functions.	
PMC_SLP_S0IX#	O CMOS	S0ix Sleep Control: This signal is for power plane control. It can be used to control system power when it is in a S0ix state.	
PMC_SLP_S4#	O CMOS	S4 Sleep Control: This signal is for power plane control. It can be used to control system power when it is in a S4 (Suspend to Disk) or S5 (Soft Off) state.	
PMC_SUS_STAT#	O CMOS	Suspend Status: This signal is asserted by the SoC to indicate that the system will be entering a low power state soon. This can be monitored by devices with memory that need to switch from normal refresh to suspend refresh mode. It can also be used by other peripherals as an indication that they should isolate their outputs that may be going to powered-off planes. This signal is muxed and may be used by other functions.	

Table 83. PMC Signals (Sheet 3 of 3)

Signal Name	Direction /Type	Description
PMC_SUSCLK	O CMOS	Suspend Clock: This 32 kHz clock is an output of the RTC generator circuit for use by other chips for refresh clock. This signal is muxed and may be used by other functions.
PMC_SUSPWRDNACK	O CMOS	Suspend Power Down Acknowledge: Asserted by the SoC when it does not require its Suspend well to be powered. This pin requires a pull-up to UNCORE_V1P8_G3. This signal is muxed and may be used by other functions.
PMC_PLT_CLK[5:0]	O CMOS	Platform Clocks: Configurable single ended clocks, configurable to 19.2 MHz or 25 MHz. This signal is muxed and may be used by other functions.

15.2 Features

15.2.1 Sx-G3-Sx, Handling Power Failures

Depending on when the power failure occurs and how the system is designed, different transitions could occur due to a power failure.

The GEN_PMCON1.AG3E bit provides the ability to program whether or not the system should boot once power returns after a power loss event. If the policy is to not boot, the system remains in an S5 state (unless previously in S4). There are only two possible events that will wake the system after a power failure.

- **PMC_PWRBTN#:** PMC_PWRBTN# is always enabled as a wake event. When RSMRST# is low (G3 state), the PM1_STS_EN.PWRBTN_STS bit is reset. When the SoC exits G3 after power returns (PMC_RSMRST# goes high), the PMC_PWRBTN# signal is already high (because the suspend plane goes high before PMC_RSMRST# goes high) and the PM1_STS_EN.PWRBTN_STS bit is 0b.
- RTC Alarm: The PM1_STS_EN.RTC_EN bit is in the RTC well and is preserved after a power loss. Like PM1_STS_EN.PWRBTN_STS the PM1_STS_EN.RTC_STS bit is cleared when PMC_RSMRST# goes low.

The SoC monitors both PMC_CORE_PWROK and PMC_RSMRST# to detect for power failures. If PMC_CORE_PWROK goes low, the GEN_PMCON1.PWR_FLR bit is set. If PMC_RSMRST# goes low, GEN_PMCON1.SUS_PWR_FLR is set.

Table 84. Transitions Due to Power Failure

State at Power Failure	GEN_PMCON1.AG3E bit	Transition When Power Returns	
S0	1 0	S5 S0	
S4	1 0	S4 S0	
S5	1 0	S5 S0	

15.2.2 Event Input Signals and Their Usage

The SoC has various input signals that trigger specific events. This section describes those signals and how they should be used.

15.2.2.1 PMC_PWRBTN# (Power Button)

The PMC_PWRBTN# signal operates as a "Fixed Power Button" as described in the Advanced Configuration and Power Interface specification. The signal has a 16 ms debounce on the input. The state transition descriptions are included in Table 85. Note that the transitions start as soon as the PMC_PWRBTN# is pressed (but after the debounce logic), and does not depend on when the power button is released.

Note:

During the time that the PMC_SLP_S4# signal is stretched for the minimum assertion width (if enabled), the power button is not a wake event. Refer to note below for more details.

Table 85. Transitions Due to Power Button

Present State	Event	Transition/Action	Comment
S0/Cx	PMC_PWRBTN# goes low	SMI# or SCI generated (depending on PM1_CNT.SCI_EN, PM1_STS_EN.PWRBTN_EN and SMI_EN.GBL_SMI_EN)	Software typically initiates a Sleep state
S4/S5	PMC_PWRBTN# goes low	Wake Event. Transitions to S0 state	Standard wakeup
G3	PMC_PWRBTN# pressed	None	No effect since no power Not latched nor detected
S0, S4	PMC_PWRBTN# held low for at least 4 consecutive seconds	Unconditional transition to S5 state	No dependence on processor or any other subsystem
S0ix	PMC_PWRBTN# goes low	Wake Event. Transitions to S0 state	PM1_STS_EN.PWRBTN_EN should be set since a SMI/SCI event is required.

Power Button Override Function

If PMC_PWRBTN# is observed active for at least four consecutive seconds, the state machine should unconditionally transition to the S5 state, regardless of present state (S0-S4), even if the PMC_CORE_PWROK is not active. In this case, the transition to the G2/S5 state should not depend on any particular response from the processor nor any similar dependency from any other subsystem.

The PMC_ PWRBTN# status is readable to check if the button is currently being pressed or has been released. The status is taken after the de-bounce, and is readable using the GEN_PMCON2.PWRBTN_LVL bit.

Note:

The 4-second PMC_PWRBTN# assertion should only be used if a system lock-up has occurred. The 4-second timer starts counting when the SoC is in a S0 state. If the PMC_PWRBTN# signal is asserted and held active when the system is in a suspend state (S4), the assertion causes a wake event. Once the system has resumed to the S0 state, the 4-second timer starts.

Note:

During the time that the SLP_S4# signal is stretched for the minimum assertion width (if enabled by GEN_PMCON1.S4ASE), the power button is not a wake event. As a result, it is conceivable that the user will press and continue to hold the power button waiting for the system to awake. Since a 4-second press of the power button is already defined as an unconditional power down, the power button timer will be forced to inactive while the power-cycle timer is in progress. Once the power-cycle timer has expired, the power button awakes the system. Once the minimum PMC_SLP_S4# power cycle expires, the power button must be pressed for another 4 to 5 seconds to create the override condition to S5.

15.2.2.2 Sleep Button

The Advanced Configuration and Power Interface specification defines an optional sleep button. It differs from the power button in that it only is a request to go from S0 to S4 (not S5). Also, in an S5 state, the power button can wake the system, but the sleep button cannot.

Although the SoC does not include a specific signal designated as a sleep button, one of the GPIO signals can be used to create a "Control Method" sleep button.

15.2.2.3 PME_B0 (PCI Power Management Event Bus 0)

The GPE0a_STS.PME_B0_STS bit exists to implement PME#-like functionality for any internal device on Bus 0 with PCI power management capabilities.

15.2.2.4 PMC_RSTBTN# Signal

When the PMC_RSTBTN# pin is detected as active after the 16 ms debounce logic, the SoC attempts to perform a "graceful" reset, by waiting for the relevant internal devices to signal their idleness. If all devices are idle when the pin is detected active, the reset

occurs immediately; otherwise, a counter starts. If at any point during the count all devices go idle the reset occurs. If the counter expires and any device is still active, a reset is forced upon the system even though activity is still occurring.

Once the reset is asserted, it remains asserted for 5 to 6 ms regardless of whether the PMC_RSTBTN# input remains asserted or not. It cannot occur again until PMC_RSTBTN# has been detected inactive after the debounce logic, and the system is back to a full S0 state with PMC_PLTRST# inactive. Note that if RST_CNT.FULL_RST is set then PMC_RSTBTN# will result in a full power cycle reset.

15.2.3 System Power Planes

The system has several independent power planes, as described in Table 86. Note that when a particular power plane is shut off, it should go to a 0 V level.

Table 86. System Power Planes

Plane	Controlled By	Description
Devices and Memory	PMC_SLP_S4#	When PMC_SLP_S4# goes active, power can be shut off to any circuit not required to wake the system from the S4/S5. Since the memory context does not need to be preserved in the S4/S5 state, the power to the memory can also be shut down. S4 and S5 requests are treated the same so no PMC_SLP_S5# signal is implemented.
Devices	Implementation Specific	Individual subsystems may have their own power plane. For example, GPIO signals may be used to control the power to disk drives, audio amplifiers, or the display screen.
Suspend	PMC_SUSPWRDNACK	The suspend power planes are generally left on whenever the system has a charged main battery or is plugged in to AC power.
		In some cases, it may be preferable to disable the suspend power planes in S4/S5 states to save additional power. This requires some external logic (such as an embedded controller) to ensure that a wake event is still possible (such as the power button).
		When the SeC is enabled it is advised that the suspend power planes not be removed. Doing so may result in extremely long Sx exit times since the SeC if forced to consider it a cold boot which may, in turn, cause exit latency violations for software using the TXE.

15.2.3.1 Power Plane Control with PMC_SLP_S0IX# and PMC_SLP_S4#

The PMC_SLP_S0IX# output signal can be used to cut power to any systems supplies that are not required during a S0ix system state.

Cutting power to the core may be done using the power supply, or by external FETs on the motherboard.

The PMC_SLP_S4# output signal can be used to cut power to the system core supply, as well as power to the system memory, since the context of the system is saved on the disk. Cutting power to the memory may be done using the power supply, or by external FETs on the motherboard.

15.2.3.2 PMC_SLP_S4# and Suspend-To-RAM Sequencing

The system memory suspend voltage regulator is controlled by the Glue logic. The PMC_SLP_S4# signal should be used to remove power to system memory. The PMC_SLP_S4# logic in the SoC provides a mechanism to fully cycle the power to the DRAM and/or detect if the power is not cycled for a minimum time.

Note:

To use the minimum DRAM power-down feature that is enabled by the GEN_PMCON1.S4ASE bit, the DRAM power must be controlled by the PMC_SLP_S4# signal.

15.2.3.3 PMC_CORE_PWROK Signal

When asserted, PMC_CORE_PWROK is an indication to the SoC that its core well power rails are powered and stable. PMC_CORE_PWROK can be driven asynchronously. When PMC_CORE_PWROK is low, the SoC asynchronously asserts PMC_PLTRST#. PMC_CORE_PWROK must not glitch, even if PMC_RSMRST# is low.

Note:

PMC_RSTBTN# is recommended for implementing the system reset button. This saves external logic that is needed if the PMC_CORE_PWROK input is used. Additionally, it allows for better handling of the processor resets and avoids improperly reporting power failures.

15.2.3.4 PMC_BATLOW# (Battery Low)

The PMC_BATLOW# input can inhibit waking from S4, and S5 states if there is not sufficient power. It also causes an SMI if the system is already in an S0 state.

15.2.4 SMI#/SCI Generation

Upon any enabled SMI event taking place while the SMI_EN.EOS bit is set, the SoC will clear the EOS bit and assert SMI to the CPU core, which will cause it to enter SMM space. SMI assertion is performed using a Virtual Legacy Wire (VLW) message. Prior system generations (those based upon legacy processors) used an actual SMI# pin.

Once the SMI message has been delivered, the SoC takes no action on behalf of active SMI events until Host software sets the End of SMI (EOS) bit. At that point, if any SMI events are still active, the SoC will send another SMI message.

The SCI is a level-mode interrupt that is typically handled by an ACPI-aware operating system. In non-APIC systems (which is the default), the SCI IRQ is routed to one of the 8259 interrupts (IRQ 9, 10, or 11). The 8259 interrupt controller must be programmed to level mode for that interrupt.

In systems using the APIC, the SCI can be routed to interrupts IRQs[11:9] or IRQs[23:20]. The interrupt polarity changes depending on whether it is on an interrupt shareable with a PIRQ or not. The interrupt remains asserted until all SCI sources are removed.

Table 87 shows which events can cause an SMI and SCI. Note that some events can be programmed to cause either an SMI or SCI. The usage of the event for SCI (instead of SMI) is typically associated with an ACPI-based system. Each SMI or SCI source has a corresponding enable and status bit.

Table 87. Causes of SMI and SCI (Sheet 1 of 3)

			Interrupt Result			
Event	Status Indication ¹	Enable Condition	SMI_EN. GBL_SMI_EN=1b		SMI_EN. GBL_SMI_EN=0b	
	Indication	Condition	PM1_CNT .SCI_EN= 1b	PM1_CNT .SCI_EN= Ob	PM1_CNT. SCI_EN= 1b	PM1_CNT. SCI_EN=0 b
Power Button Override ³	PM1_STS_EN. PWRBTNOR_STS	None	SCI	None	SCI	None
RTC Alarm	PM1_STS_EN. RTC_STS	PM1_STS_EN_EN. RTC_EN=1b	SCI	SMI	SCI	None
Power Button Press	PM1_STS_EN. PWRBTN_STS	PM1_STS_EN_EN. PWRBTN_EN=1b	SCI	SMI	SCI	None
SMI_EN.BIOS_RL S bit written to 1b ⁴	PM1_STS_EN. GBL_STS	PM1_STS_EN_EN. GBL_EN=1b	SCI			
ACPI Timer overflow (2.34 seconds)	PM1_STS_EN. TMROF_STS	PM1_STS_EN_EN. TMROF_EN =1b	SCI	SMI	SCI	None
GPI[n] ⁹	GPE0a_STS. CORE_GPIO_STS[n] ² or GPE0a_STS. SUS_GPIO_STS[n] ²	GPIO_ROUT[n] = 10b & GPE0a_EN. CORE_GPIO_EN[n]^2=1b or GPE0a_EN. SUS_GPIO_EN[n] 2=1b	SCI	None	SCI	None
Internal, Bus 0, PME-Capable Agents (PME_B0)	GPE0a_STS. PME_B0_STS	GPE0_EN. PME_B0_EN=1b	SCI	SMI	SCI	None
BATLOW# pin goes low	GPE0a_STS. BATLOW_STS#	GPE0_EN. BATLOW_EN=1b	SCI	SMI	SCI	None
Software Generated GPE	GPE0a_STS. SWGPE_STS	GPE0_EN. SWGPE_EN=1b	SCI	SMI	SCI	None

Table 87. Causes of SMI and SCI (Sheet 2 of 3)

	Status Indication ¹	Enable Condition	Interrupt Result			
Event			SMI_EN. GBL_SMI_EN=1b		SMI_EN. GBL_SMI_EN=0b	
	Indication	Condition	PM1_CNT .SCI_EN= 1b	PM1_CNT .SCI_EN= Ob	PM1_CNT. SCI_EN= 1b	PM1_CNT. SCI_EN=0 b
DOSCI message from GUNIT ⁵	GPE0a_STS. GUNIT_STS	None (enabled by G-Unit ⁸)	SCI	None	SCI None	
ASSERT_SMI message from SPI ⁵	SMI_STS. SPI_SMI_STS	None (enabled by SPI controller)	SI	MI	No	one
ASSERT_IS_SMI message from USB	SMI_STS. USB_IS_STS	SMI_EN. USB_IS_SMI_EN =1b	SI.	MI	No	one
ASSERT_SMI message from USB	SMI_STS.USB_ST S	SMI_EN. USB_SMI_EN=1b	SI.	MI	No	one
ASSERT_SMI message from iLB ⁵	SMI_STS. ILB_SMI_STS	None (enabled by iLB)	SMI		None	
Periodic timer expires	SMI_STS. PERIODIC_STS	SMI_EN. PERIODIC_EN=1b	SMI		None	
WDT first expiration	SMI_STS.TCO_ST S	SMI_EN.TCO_EN =1b	SMI		None	
64 ms timer expires	SMI_STS. SWSMI_TMR_STS	SMI_EN. SWSMI_TMR_EN =1b	SMI		None	
PM1_CNT.SLP_EN bit written to 1b	SMI_STS. SMI_ON_SLP_EN_ STS	SMI_EN. SMI_ON_SLP_EN =1b	Sync SMI ⁶		None	
PM1_CNT.GBL_RL S written to 1b	SMI_STS.BIOS_ST S	SMI_EN. BIOS_EN=1b	Sync	SMI ⁶	None	
DOSMI message from GUNIT ⁵	SMI_STS. GUNIT_SMI_STS	None (enabled by G-Unit ⁸)	SMI		None	
ASSERT_IS_SMI message from iLB ⁵	SMI_STS. ILB_SMI_STS	None (enabled by iLB)	Sync SMI ⁷		None	
GPI[n] ¹⁰	ALT_GPIO_SMI. CORE_GPIO_SMI_ STS[n] ² or ALT_GPIO_SMI. SUS_GPIO_SMI_S TS[n] ²	GPIO_ROUT[n]=0 1b & ALT_GPIO_SMI. CORE_GPIO_SMI _EN[n]^2=1b or ALT_GPIO_SMI. SUS_GPIO_SMI_E N[n]^2=1b	SMI		No	one

Table 87. Causes of SMI and SCI (Sheet 3 of 3)

	Status	Enable	Interrupt Result			
Event			SMI_EN. GBL_SMI_EN=1b		SMI_EN. GBL_SMI_EN=0b	
	Indication-	Cation Condition PN .Sc		PM1_CNT .SCI_EN= Ob	PM1_CNT. SCI_EN= 1b	PM1_CNT. SCI_EN=0 b
USB Per-Port Registers Write Enable bit is changed from 0b to 1b	UPRWC.WE_STS & SMI_STS. USB_IS_STS	UPRWC. WE_SMI_E=1b & SMI_EN. USB_IS_SMI_EN =1b	Sync	SMI ⁶	No	ne

NOTES:

- 1. Most of the status bits (except otherwise is noted) are set according to event occurrence regardless to the enable bit.
- 2. GPIO status bits are set only if enable criteria is true. GPIO_ROUT[n]=10b & GPE0a_EN.x_GPIO_EN[n] for GPE0a_STS.x_GPIO_STS[n] (SCI). GPIO_ROUT[n]=01b & ALT_GPIO_SMI. x_GPIO_SMI_EN[n]=1b for ALT_GPIO_SMI.x_GPIO_SMI_STS[n] (SMI).
- When power button occurs, the system will transition immediately to S5. The SCI will only occur after the next wake to S0 if the restauts bit (PM1_STS_EN.PWRBTNOR_STS) is not cleared prior to setting PM1_CNT.SCI_EN.
- 4. PM1_STS_EN.GBL_STS being set will cause an SCI, even if the PM1_CNT.SCI_EN bit is not set. Software must take great care not to set the SMI_ENBIOS_RLS bit (which causes PM1_STS_EN.GBL_STS to be set) if the SCI handler is not in place.
- 5. No enable bits for these SCI/SMI messages in the PMC. Enable capability should be implemented in the source unit.
- 6. Sync SMI has the same message opcode toward T-Unit. Special treatment regarding this Sync SMI is holding completion to host till SYNC_SMI_ACK message is received from T-Unit.
- 7. Sync SMI has the same message opcode toward T-Unit. Special treatment regarding this Sync SMI is holding the SSMI_ACK message to iLB till SYNC_SMI_ACK message is received from T-Unit.
- 8. The G-Unit is an internal functional sub-block which forms part of the graphics functional block.
- 9. The GPE0a_STS.CORE_GPIO_STS[31:24] & GPE0a_EN.CORE_GPIO_EN[31:24] register bits correspond to GPIO_S0_SC[7:0]. GPE0a_STS.SUS_GPIO_STS[23:16] & GPE0a_EN.SUS_GPIO_EN[23:16] correspond to GPIO_S5[7:0].
- 10. The ALT_GPIO_SMI.CORE_GPIO_SMI_STS[31:24] & ALT_GPIO_SMI.CORE_GPIO_SMI_EN[15:8] register bits correspond to GPIO_SO_SC[7:0]. ALT_GPIO_SMI.SUS_GPIO_SMI_STS[23:16] & ALT_GPIO_SMI.SUS_GPIO_SMI_EN[7:0] correspond to GPIO_S5[7:0].

15.2.5 Platform Clock Support

The SoC supports up to 6 clocks (PMC_PLT_CLK[5:0]) with a frequency of either 19.2 MHz or 25 MHz. These clocks are available for general system use, where appropriate and each have Control & Frequency register fields associated with them.

15.2.6 INIT# (Initialization) Generation

The INIT# functionality is implemented as a 'virtual wire' internal to the SoC rather than a discrete signal. This virtual wire is asserted based on any one of the events described in below table. When any of these events occur, INIT# is asserted for 16 PCI clocks and then driven high.

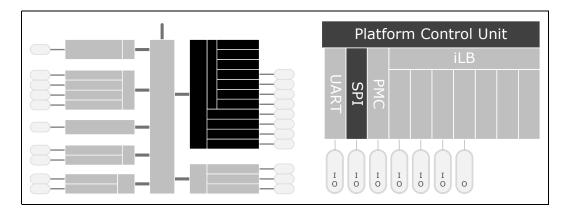
INIT#, when asserted, resets integer registers inside the CPU cores without affecting its internal caches or floating-point registers. The cores then begin execution at the power on Reset vector configured during power on configuration.

Table 88. INIT# Assertion Causes

Cause
PORT92.INIT_NOW transitions from 0b to1b.
RST_CNT.SYS_RST = 0b and RST_CNT.RST_CPU transitions from 0b to 1b

15.3 References

Advanced Configuration and Power Interface Specification, Revision 3.0: http://www.acpi.info/


§

16 PCU - Serial Peripheral Interface (SPI)

The SoC implements a SPI controller as the interface for BIOS Flash storage. This SPI Flash device is also required to support firmware for the Trusted Execution Engine (required). The controller supports a maximum of two SPI Flash devices, using two chip select signals, with speeds of 20 MHz, 33 MHz or 50 MHz.

Note: The default interface speed is 20 MHz.

16.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 89. SPI Signals

Signal Name	Direction /Type	Description
PCU_SPI_CLK	O CMOS1.8	SPI Clock: When the bus is idle, the owner will drive the clock signal low.
PCU_SPI_CS[0]#	O CMOS1.8	SPI Chip Select 0: Used as the SPI bus request signal for the first SPI Flash device.
PCU_SPI_CS[1]#	O CMOS1.8	SPI Chip Select 1: Used as the SPI bus request signal for the second SPI Flash devices. This signal is muxed and may be used by other functions.
PCU_SPI_MISO	I CMOS1.8	SPI Master IN Slave OUT: Data input pin for the SoC.
PCU_SPI_MOSI	I/O CMOS1.8	SPI Master OUT Slave IN: Data output pin for the SoC. Operates as a second data input pin for the SoC when in Single Input, Dual Output Fast Read mode.

Note:

All SPI signals are tri-stated with 20k ohm internal weak pull-up until PMC_CORE_PWROK is asserted.

16.2 Features

The SPI controller supports up to two SPI Flash devices using two separate chip select pins. Each SPI Flash device can be up to 16 MB. The SoC SPI interface supports 20 MHz, 33 MHz and 50 MHz SPI Flash devices. No other types of SPI devices are supported.

Communication on the SPI bus is done with a Master – Slave protocol. The Slave is connected to the SoC and is implemented as a tri-state bus.

Note: When GCS.BBS = 00b, LPC is selected as the location for BIOS. The SPI Flash may still contain data and firmware for other SoC functionality.

Note: When GCS.BBS =11b and a SPI device is detected by the SoC, LPC based BIOS Flash is disabled.

16.2.1 Operation Mode Features

The SPI controller has two operational modes, Non-Descriptor and Descriptor.

16.2.1.1 Non-Descriptor Mode

If no valid signature is read (either because there is no SPI Flash, or there is an SPI Flash with no valid descriptor), the Flash Controller will operate in a Non-Descriptor mode.

The following features are not supported in Non-Descriptor mode:

- Trusted Execution Engine
- Secure Boot
- Soft Straps
- Two SPI Flash device support
- Hardware sequencing access
- Descriptor-based security access restrictions

Note: When operating in Non-Descriptor mode, software sequencing must be used to access

the Flash.

Note: When operating in Non-Descriptor Mode, and a SPI Flash is attached to the SoC, it is required that the Flash Valid Signature, at offset 10h of the Flash Descriptor, does not equal the expected valid value (0FF0A55Ah) or the SPI Controller will wrongly interpret that it has a valid signature and that a Flash Descriptor has been implemented.

16.2.2 Descriptor Mode

Descriptor Mode is required to enable many features of the SoC:

- Trusted Execution Engine
- Secure Boot
- Supports for two SPI components using two separate chip select pins
- Hardware enforced security restricting master accesses to different regions
- Soft Strap region providing the ability to use Flash NVM to remove the need for pull-up/pull-down resistors for strapping SoC features
- Support for the SPI Fast Read instruction and frequencies greater than 20 MHz
- Support for Single Input, Dual Output Fast reads
- Use of standardized Flash instruction set

SPI Flash Regions

In Descriptor Mode the Flash is divided into five separate regions:

Table 90. SPI Flash Regions

Region	Content
0	Flash Descriptor
1	BIOS
2	Trusted Execution Engine
3	
4	Platform Data

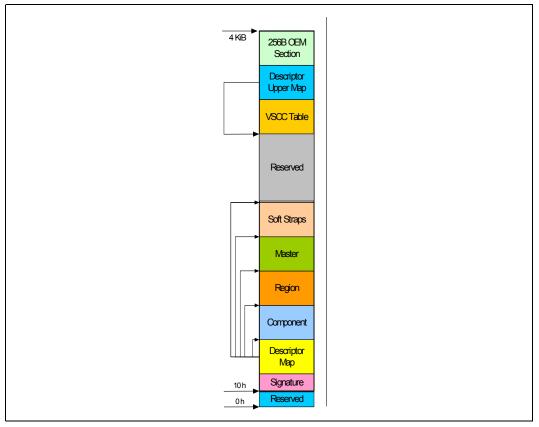
Only masters can access the four regions: The SoC CPU core running BIOS code and the Trusted Execution Engine. The only required region is Region 0, the Flash Descriptor. Region 0 must be located in the first sector of Device 0.

Flash Regions Sizes

SPI Flash space requirements differ by platform and configuration. Table 91 indicates the space needed in the Flash for each region.

Table 91. Region Size Versus Erase Granularity of Flash Components

Region Size with 4 KB Blocks		Size with 8 KB Blocks	Size with 64 KB Blocks
Descriptor	4 KB	8 KB	64 KB
BIOS Varies by Platforn		Varies by Platform	Varies by Platform


16.2.3 Flash Descriptor

The maximum size of the Flash Descriptor is 4 KB. If the block/sector size of the SPI Flash device is greater than 4 KB, the Flash descriptor will only use the first 4 KB of the first block. The Flash descriptor requires its own block at the bottom of memory (00h). The information stored in the Flash Descriptor can only be written during the manufacturing process as its read/write permissions must be set to Read only when the system containing the SoC leaves the manufacturing floor.

The Flash Descriptor is made up of eleven sections as indicated in below figure.

Figure 34. Flash Descriptor Sections

- The **Reserved** section at offset 0h is related to functionality not supported by the SoC.
- The **Signature** section selects Descriptor Mode as well as verifies if the Flash is programmed and functioning. The data at the bottom of the Flash (offset 10h) must be 0FF0A55Ah in order to be in Descriptor mode.
- The **Descriptor Map** section defines the logical structure of the Flash in addition to the number of components used.
- The **Component** section has information about the SPI Flash in the system including:
 - Density of each component
 - Illegal instructions (such as chip erase)
 - Frequencies for read, fast read and write/erase instructions.
- The **Region** section points to the four other regions as well as the size of each region.
- The **Master** region contains the security settings for the Flash, granting read/write permissions for each region and identifying each master by a requestor ID.

- The Soft Straps section contains parameter bits that can be used to configure SoC features and/or behaviors.
- The **Reserved** section between the top of the **Soft Straps** section and the bottom of the **VSCC Table** is reserved for future SoC usages.
- The VSCC Table section holds the JEDEC ID and the VSCC (Vendor Specific Component Capabilities) information of the entire SPI Flash supported by the NVM image.
- The Descriptor Upper Map section determines the length and base address of the VSCC Table section.
- The **OEM Section** is 256 Bytes reserved at the top of the Flash Descriptor for use by an OEM.

16.2.3.1 Master Section

The Master section defines read and write access setting for each region of the SPI device, when the SPI controller is running in Descriptor mode. The master region recognizes masters: SoC CPU core running BIOS code and the Trusted Execution Engine.

Note:

Each master is only allowed to do direct reads of its primary regions. The Trusted Execution Engine is may also do a direct read of the BIOS region if it has been given read access to that region. Refer Section 16.2.4.1, "Direct Access" on page 198 for further details on direct reads.

Table 92. Region Access Control

Master Read/Write Access				
Region	Trusted Execution Engine			
Descriptor	N/A	N/A		
BIOS	CPU core and BIOS can always read from and write to BIOS Region	Read / Write		
Trusted Execution Engine	Read / Write	Trusted Execution can always read from and write to Trusted Execution Engine Region		
Platform Data	N/A	N/A		

16.2.3.2 Invalid Flash Descriptor Handling

The SoC will respond to an invalid Flash Descriptor with the following:

- The SPI controller will operate in Non-Descriptor mode.
- If the BBS strap (refer Chapter 14, "Platform Controller Unit (PCU) Overview" for details) is set to 1, BIOS direct read access will be forwarded to the SPI Controller without any address translation.

- The HSFSTS.FDV register bits remains at 0b.
- All security checks are disabled and the entire Flash is open for reading and writing. No restriction on the 4k crossing.
- Trusted Execution Engine direct read accesses will not be handled, and the SPI controller will return all 1's.

Note:

To ensure BIOS boot access even when the Flash Descriptor is invalid the BIOS region can be placed at the top of Flash Component 0. Placing the BIOS region in any other location will necessitate a full reprogramming of the Flash before boot is possible from that Flash.

16.2.3.3 Descriptor Security Override Strap

A strap is implemented on GPIO_S0_SC[065] to allow descriptor security to be overridden when the strap is sampled low.

If the strap is set (0b), it will have the following effect:

- The Master Region Read Access and Master Region Write Access permissions that were loaded from the Flash Descriptor Master Section will be overridden giving every master read and write permissions to the entire Flash component including areas outside the defined regions.
- BIOS Protected Range 4 (PR4), if enabled by soft strap, will be overridden so that all masters are able to write to the PR4. The PR4 base and limit addresses are fetched and received from soft strap.

16.2.4 Flash Access

There are two types of Flash accesses: Direct Access and Program Register Access.

16.2.4.1 Direct Access

- Direct writes are not allowed for any master.
- The SoC CPU core is only allowed to do a direct read of the BIOS region
- The Trusted Execution Engine is only allowed to do a direct read of the Trusted Execution Engine region. It may also do a direct read of the BIOS region if it has been given read access to that region.

Note:

Trusted Execution Engine region direct reads are not supported when the SPI controller is operating in Non-Descriptor mode. The SPI controller returns all 1s if a direct read is attempted.

16.2.4.2 Security

• Calculated Flash Linear Address (FLA) must fall between primary region base/limit

Note:

During non descriptor mode, the Flash Physical Address is used instead. Only the two BIOS ranges at the E0000h and F0000h segments just below 1MB are supported.

Direct Read Cache contents are reset to 0's on a read from a different master

16.2.4.3 Program Register Access

- Reads, Writes and Erases are all supported.
- Program Register Access may use Hardware or Software Sequencing. Refer Section 16.3.1, "Hardware vs. Software Sequencing" on page 205 for further information.
- Program Register Accesses are not allowed to cross a 4 KB boundary and can not issue a command that might extend across two components
- Software programs the FLA corresponding to the region desired
 - Software must read the devices Primary Region Base/Limit address to create a FLA.

Each master accesses the Flash through a set of memory mapped registers that are dedicated to each device.

There are two separate control and status registers that software can use when using register access to the Flash. The Hardware Sequencing control/status registers rely on hardware to issue appropriate Flash instructions and atomic sequences. The Software Sequencer puts control into the hands of the software for what instructions to issue and when.

The goal is to support all Flash components through hardware sequencing. Software sequencing is intended only for a back-up strategy.

Note: Software sequencing is required when operating in a non-descriptor mode.

16.2.4.4 Security

- Only primary region masters can access the registers
- Masters are only allowed to read or write those regions they have read/write permission
- Using the Flash region access permissions, one master can give another master read/write permissions to their area
- Using the five Protected Range registers, each master can add separate read/write protection above that granted in the Flash Descriptor for their own accesses
 - Example: BIOS may want to protect different regions of BIOS from being erased
 - Ranges can extend across region boundaries

16.2.5 Serial Flash Device Compatibility Requirements

A variety of serial Flash devices exist in the market. For a serial Flash device to be compatible with the SoC SPI bus, it must meet the minimum requirements detailed in the following sections.

Note:

To support a SPI controller clock frequency of 50 MHz, the attached SPI flash device must meet 66 MHz timing requirements.

16.2.5.1 BIOS SPI Flash Requirements

The SPI Flash device must meet the following minimum requirements when used explicitly for system BIOS storage.

- Erase size capability of at least one of the following: 64 Kbytes, 8 Kbytes, 4 Kbytes, or 256 bytes.
- Device must support multiple writes to a page without requiring a preceding erase cycle (Refer to Section 16.2.6.)
- Serial Flash device must ignore the upper address bits such that an address of FFFFFFh aliases to the top of the Flash memory.
- SPI Compatible Mode 0 support (clock phase is 0 and data is latched on the rising edge of the clock).
- If the device receives a command that is not supported or incomplete (less than 8 bits), the device must complete the cycle gracefully without any impact on the Flash content.
- An erase command (page, sector, block, chip, etc.) must set all bits inside the designated area (page, sector, block, chip, etc.) to 1 (Fh).
- Status Register bit 0 must be set to 1 when a write, erase or write to status register is in progress and cleared to 0 when a write or erase is NOT in progress.
- Devices requiring the Write Enable command must automatically clear the Write Enable Latch at the end of Data Program instructions.
- Byte write must be supported. The flexibility to perform a write between 1 byte to 64 bytes is recommended.
- Hardware Sequencing requirements are optional in BIOS only platforms.
- SPI Flash devices that do not meet hardware sequencing command set requirements may work in BIOS only platforms using software sequencing.
- If implementing two SPI flash devices, both devices must have the same erasable block/sector size. Additionally, the first device must be of a binary size.

16.2.5.2 Intel® Trusted Execution Engine Firmware SPI Flash Requirements

Intel® Trusted Execution Engine Firmware must meet all the requirements in Section 16.2.5.1 plus:

- Hardware sequencing
- The Flash device must have a uniform 4-KB erasable block throughout the entire device or have 64 KB blocks with the first block (lowest address) divided into 4-KB or 8-KB blocks.
- The write protection scheme must meet SPI Flash unlocking requirements for the Trusted Execution Engine

SPI Flash Unlocking Requirements for Intel® Trusted Execution Engine

Flash devices must be globally unlocked (read, write and erase access on the Trusted Execution Engine region) from power on by writing 00h to the Flash's status register to disable write protection.

If the status register must be unprotected, it must use the enable write status register command 50h or write enable 06h.

Opcode 01h (write to status register) must then be used to write a single byte of 00h into the status register. This must unlock the entire device. If the SPI Flash's status register has non-volatile bits that must be written to, bits [5:2] of the Flash's status register must be all 0h to indicate that the Flash is unlocked.

If bits [5:2] return a non zero values, the Trusted Execution Engine firmware will send a write of 00h to the status register. This must keep the Flash part unlocked.

If there is no need to execute a write enable on the status register, then opcodes 06h and 50h must be ignored.

After global unlock, the BIOS has the ability to lock down small sections of the Flash as long as they do not involve the Trusted Execution Engine.

16.2.5.3 Hardware Sequencing Requirements

Below table contains a list of commands and the associated opcodes that a SPI-based serial Flash device must support in order to be compatible with hardware sequencing.

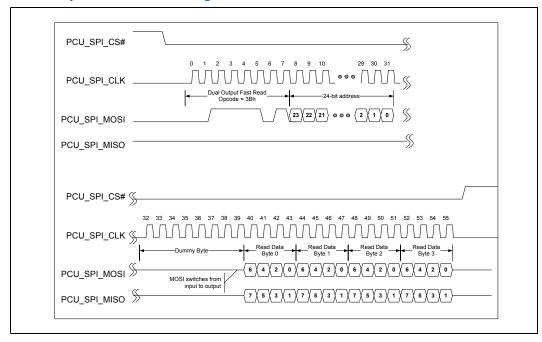
Table 93. Hardware Sequencing Commands and Opcode Requirements

Commands	Opcode	Notes
Write to Status Register	01h	Writes a byte to SPI Flash's status register. Enable Write to Status Register command must be run prior to this command.
Program Data	02h	Single byte or 64 byte write as determined by Flash part capabilities and software.
Read Data	03h	
Write Disable	04h	
Read Status	05h	Outputs contents of SPI Flash's status register
Write Enable	06h	
Fast Read	0Bh	
Enable Write to Status Register	50h	Enables a bit in the status register to allow an update to the status register
Erase	Programmabl e	Uses the value from LVSSC.LEO register or UVSSC.UEO register depending on the FLA and whether it is below or above the FPBA respectively

Single Input, Dual Output Fast Read

The SPI controller supports the functionality of a single input, dual output fast read: Opcode 3Bh. This instruction has the same timing (including a dummy byte) and the same frequencies as the Fast Read instruction, with the difference that the read data from the Flash is presented on both the MISO and MOSI pins. During a Dual Read instruction, the odd data bits are on the MISO pin and the even data bits are on the MOSI pin.

Note: When Dual Output Fast Read Support is enabled the Fast Read Support must be


enabled as well.

Note: Micronix* SPI Flash uses a different opcode for dual fast read, and requires that during

the address phase that the address bits are sent on both MOSI and MISO. The SoC $\,$

does not support this implementation of the protocol.

Figure 35. Dual Output Fast Read Timing

JEDEC ID

Since each serial Flash device may have unique capabilities and commands, the JEDEC ID is the necessary mechanism for identifying the device so the uniqueness of the device can be comprehended by the controller (master). The JEDEC ID uses the opcode 9Fh and a specified implementation and usage model. This JEDEC Standard Manufacturer and Device ID read method is defined in Standard JESD21-C, PRN03-NV.

Error Correction and Detection

If the first 8 bits specify an opcode which is not supported the slave will not respond and wait for the next high to low transition on PCU_SPI_CS[1:0]#. The SPI controller should automatically discard 8 bit words that were not completely received upon deassertion of the signal.

Any other error correction or detection mechanisms must be implemented in firmware and/or software.

16.2.6 Multiple Page Write Usage Model

The BIOS and Trusted Execution Engine firmware usage models require that the serial Flash device support multiple writes to a page (minimum of 512 writes) without requiring a preceding erase command. The BIOS commonly uses capabilities such as counters that are used for error logging and system boot progress logging. These counters are typically implemented by using byte-writes to 'increment' the bits within a page that have been designated as the counter. The Trusted Execution Engine firmware usage model requires the capability for multiple data updates within any given page. These data updates occur using byte-writes without executing a preceding erase to the given page. Both the BIOS and Trusted Execution Engine firmware multiple page write usage models apply to sequential and non-sequential data writes.

This usage model requirement is based on any given bit only being written once from a '1' to a '0'without requiring the preceding erase. An erase would be required to change bits back to the 1 state.

16.2.7 Soft Flash Protection

There are two types of Flash protection that are not defined in the Flash descriptor supported by the SPI controller:

- 1. Flash Range Read and Write Protection
- 2. Global Write Protection

16.2.7.1 Flash Range Read and Write Protection

The SPI controller provides a method for blocking reads and writes to specific ranges in the Flash when the Protected Ranges are enabled. This is achieved by checking the read or write cycle type and the address of the requested command against the base and limit fields of a Read or Write Protected range. Protected range registers are only applied to Programmed Register accesses and have no effect on Direct Reads.

Note:

Once BIOS has locked down the Protected BIOS Range registers, this mechanism remains in place until the next system reset.

16.2.7.2 Global Write Protection

The SPI controller has a Write Protection Disable (BCR.WPD) configuration bit. When BCR.WPD=0b, BIOS is not able to perform any write or erase commands to the Flash. When BCR.WPD=1b, protection against BIOS erase and rewrite is disabled. When the lock enable (BCR.LE) bit is set, the BIOS can disable this protection only during System Management Mode (SMM) execution.

If BCR.LE=1b, the SPI controller confirms that only SMM code succeeds to set BCR.WPD=1b. In addition, if BCS.SMIWPEN=1b, the SPI controller should initiate an SMI when non SMM code tries to set BCR.WPD=1b.

16.2.8 SPI Flash Device Recommended Pinout

This table contains the recommended serial Flash device pin-out for an 8-pin device. Use of the recommended pin-out on an 8-pin device reduces complexities involved with designing the serial Flash device onto a motherboard and allows for support of a common footprint usage model (refer to Section 16.2.9.1).

Table 94. Recommended Pinout for 8-Pin Serial Flash Device

Pin #	Signal
1	Chips Select
2	Data Output
3	Write Protect
4	Ground
5	Data Input
6	Serial Clock
7	Hold / Reset
8	Supply Voltage

Although an 8-pin device is preferred over a 16-pin device due to footprint compatibility, Table 95 contains the recommended serial Flash device pin-out for a 16-pin SOIC.

16.2.9 Serial Flash Device Package

Table 95. Recommended Pinout for 16-Pin Serial Flash Device

Pin #	Signal	Pin #	Signal
1	Hold / Reset	9	Write Protect
2	Supply Voltage	10	Ground
3	No Connect	11	No Connect
4	No Connect	12	No Connect
5	No Connect	13	No Connect

Table 95. Recommended Pinout for 16-Pin Serial Flash Device

Pin #	Signal	Pin #	Signal
6	No Connect	14	No Connect
7	Chip Select	15	Serial Data In
8	Serial Data Out	16	Serial Clock

16.2.9.1 Common Footprint Usage Model

To minimize platform motherboard redesign and to enable platform Bill of Material (BOM) selectability, many OEMs design their motherboard with a single common footprint. This common footprint allows the population of a soldered down device or a socket that accepts a leadless device. This enables the board manufacturer to support, using selection of the appropriate BOM, either of these solutions on the same system without requiring any board redesign.

The common footprint usage model is desirable during system debug and by Flash content developers since the leadless device can be easily removed and reprogrammed without damage to device leads. When the board and Flash content is mature for high-volume production, both the socketed leadless solution and the soldered down leaded solution are available through BOM selection.

16.2.9.2 Serial Flash Device Package Recommendations

It is highly recommended that the common footprint usage model be supported. An example of how this can be accomplished is as follows:

- The recommended pinout for 8-pin serial Flash devices is used (refer to Table 94).
- The 8-pin device is supported in either an 8-contact VDFPN (6x5 mm MLP) package or an 8-contact WSON (5x6 mm) package. These packages can fit into a socket that is land pattern compatible with the wide body SO8 package.
- The 8-pin device is supported in the SO8 (150 mil) and in the wide-body SO8 (200 mil) packages.
- The 16-pin device is supported in the SO16 (300 mil) package.

16.3 Use

16.3.1 Hardware vs. Software Sequencing

Hardware and Software sequencing are the two methods the SoC uses to communicate with the Flash via programming registers for each of the three masters.

16.3.1.1 Hardware Sequencing

Hardware sequencing has a predefined list of opcodes, refer Table 93 for more details, with only the erase opcode being programmable. This mode is only available if the descriptor is present and valid. Security Engine firmware must use HW sequencing, so

BIOS must properly set up the SoC to account for this. The Host VSCC registers and VSCC Table have to be correctly configured for BIOS and Security Engine have read/write access to SPI.

16.3.1.2 Software Sequencing

All commands other than the standard (memory) reads must be programmed by the software in the Software Sequencing Control, Flash Address, Flash Data, and Opcode configuration registers. Software must issue either Read ID or Read JEDEC ID, or a combination of the two to determine what Flash component is attached. Based on the Read ID, software can determine the appropriate Opcode instructions sets to set in the program registers and at what SPI frequency to run the command.

Software must program the Flash Linear Address for all commands, even for those commands that don't require address such as the Read ID or Read Status. This is because the SPI controller uses the address to determine which chip select to use.

The opcode type and data byte count fields determine how many clocks to run before deasserting the chip enable. The Flash data is always shifted in for the number of bytes specified and the Flash Data out is always shifted out for the number of data bytes specified. Note that the hardware restricts the burst lengths that are allowed.

A status bit indicates when the cycle has completed on the SPI port allowing the host to know when read results can be checked and/or when to initiate a new command.

The controller also provides the "Atomic Cycle Sequence" for performing erases and writes to the SPI Flash. When this bit is 1 (and the Go bit is written to 1), a sequence of cycles is performed on the SPI interface without allowing other SPI device to arbitrate and interleave cycles to the Flash device. In this case, the specified cycle is preceded by the Prefix Command (8-bit programmable Opcode) and followed by repeated reads to the Status Register (Opcode 05h) until bit 0 indicates the cycle has completed. The hardware does not attempt to check that the programmed cycle is a write or erase.

If a Programmed Access is initiated (Cycle Go written to 1) while the SPI controller is already busy with a Direct Memory Read, then the SPI Host hardware will hold the new Programmed Access pending until the preceding SPI access completes.

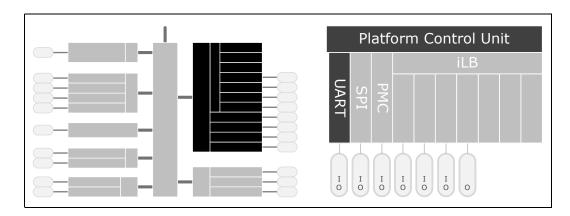
Once the SPI controller has committed to running a programmed access, subsequent writes to the programmed cycle registers that occur before it has completed will not modify the original transaction and will result in the assertion of the FCERR bit. Software should never purposely behave in this way and rely on this behavior. However, the FCERR bit provides basic error-reporting in this situation. Writes to the following registers cause the FCERR bit assertion in this situation:

- Software Sequencing Control
- Software Sequencing Address
- SPI Data

PCU - Serial Peripheral Interface (SPI)

With the exception of Illegal Opcodes, the SPI controller does not police which opcodes are valid to be used in SW Sequencing. For example, if SW programs a Dual Output Fast Read opcode, then the Dual Output Fast Read cycle will be issued, independent of whether the Dual Output Fast Read enable bit was set in the component descriptor section.

§



17 PCU - Universal Asynchronous Receiver/Transmitter (UART)

This section describes the Universal Asynchronous Receiver/Transmitter (UART) serial port integrated into the PCU. The UART may be controlled through programmed IO.

Note:

Only a minimal ball-count, comprising receive & transmit signals, UART port is implemented. Further, a maximum baud rate of only 115,200 bps is supported. For this reason, it is recommended that the UART port be used for debug purposes only.

17.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 96. UART Signals

Signal Name	Direction /Type	Description	
PCU_UART_RXD	I	COM1 Receive: Serial data input from device pin to the receive port. This signal is muxed and may be used by other functions.	
PCU_UART_TXD	0	COM1 Transmit: Serial data output from transmit port to the device pin. This signal is muxed and may be used by other functions.	

17.2 Features

The serial port consists of a UART which supports a subset of the functions of the 16550 industry standard.

The UART performs serial-to-parallel conversion on data characters received from a peripheral device and parallel-to-serial conversion on data characters received from the processor. The processor may read the complete status of the UART at any time during the functional operation. Available status information includes the type and condition of the transfer operations being performed by the UART and any error conditions.

The serial port may operate in either FIFO or non-FIFO mode. In FIFO mode, a 16-byte transmit FIFO holds data from the processor to be transmitted on the serial link and a 16-byte Receive FIFO buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator which is capable of generating a baud rate of between 50 bps and 115,200 bps from a fixed baud clock input of 1.8432 MHz. The baud rate is calculated as follows:

Baud Rate Calculation:

BaudRate =
$$\frac{1.8432 \times 10^6}{16 \times \text{Divisor}}$$

The divisor is defined by the Divisor Latch LSB and Divisor Latch MSB registers. Some common values are shown in Table 97.

Table 97. Baud Rate Examples

Desired Baud Rate	Divisor	Divisor Latch LSB Register	Divisor Latch MSB Register
115,200	1	1h	0h
57,600	2	2h	0h
38,400	3	3h	0h
19,200	6	6h	0h
9,600	12	Ch	0h
4,800	24	18h	0h
2,400	48	30h	0h
1,200	96	60h	0h
300	384	80h	1h
50	2,304	0h	9h

The UART has interrupt support and those interrupts may be programmed to the user's requirements, minimizing the computing required to handle the communications link. Each UART may operate in a polled or an interrupt driven environment as configured by software.

17.2.1 FIFO Operations

17.2.1.1 FIFO Interrupt Mode Operation

Receiver Interrupt

When the Receive FIFO and receiver interrupts are enabled (FIFO Control Register, bit 0 = 1b and Interrupt Enable Register (IIR), bit 0 = 1b), receiver interrupts occur as follows:

- The receive data available interrupt is invoked when the FIFO has reached its programmed trigger level. The interrupt is cleared when the FIFO drops below the programmed trigger level.
- The IIR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt, the bits are cleared when the FIFO drops below the trigger level.
- The receiver line status interrupt (IIR = C6h), as before, has the highest priority. The receiver data available interrupt (IIR = C4h) is lower. The line status interrupt occurs only when the character at the top of the FIFO has errors.
- The COM1_LSR.DR bit is set to 1b as soon as a character is transferred from the shift register to the Receive FIFO. This bit is reset to 0b when the FIFO is empty.

Character Time Out Interrupt

When the receiver FIFO and receiver time out interrupt are enabled, a character time out interrupt occurs when all of the following conditions exist:

- At least one character is in the FIFO.
- The last received character was longer than four continuous character times ago (if 2 stop bits are programmed the second one is included in this time delay).
- The most recent processor read of the FIFO was longer than four continuous character times ago.
- The receiver FIFO trigger level is greater than one.

The maximum time between a received character and a timeout interrupt is 160 ms at 300 baud with a 12-bit receive character (i.e., 1 start, 8 data, 1 parity, and 2 stop bits).

When a time out interrupt occurs, it is cleared and the timer is reset when the processor reads one character from the receiver FIFO. If a time out interrupt has not occurred, the time out timer is reset after a new character is received or after the processor reads the receiver FIFO.

Transmit Interrupt

When the transmitter FIFO and transmitter interrupt are enabled (FIFO Control Register, bit 0 = 1b and Interrupt Enable Register, bit 0 = 1b), transmit interrupts occur as follows:

The Transmit Data Request interrupt occurs when the transmit FIFO is half empty or more than half empty. The interrupt is cleared as soon as the Transmit Holding Register is written (1 to 16 characters may be written to the transmit FIFO while servicing the interrupt) or the Interrupt Identification Register is read.

17.2.1.2 FIFO Polled Mode Operation

With the FIFOs enabled (FIFO Control register, bit 0=1b), setting Interrupt Enable register (IER), bits 3:0=000b puts the serial port in the FIFO polled mode of operation. Since the receiver and the transmitter are controlled separately, either one or both may be in the polled mode of operation. In this mode, software checks receiver and transmitter status through the Line Status Register (LSR). As stated in the register description:

- LSR[0] is set as long as there is one byte in the receiver FIFO.
- LSR[1] through LSR[4] specify which error(s) has occurred for the character at the top of the FIFO. Character error status is handled the same way as interrupt mode. The Interrupt Identification Register is not affected since IER[2] = 0b.
- LSR[5] indicates when the transmitter FIFO needs data.
- LSR[6] indicates that both the transmitter FIFO and shift register are empty.
- LSR[7] indicates whether there are any errors in the receiver FIFO.

17.3 Use

17.3.1 Base I/O Address

The base I/O address for the COM1 UART is fixed to 3F8h.

17.3.2 Legacy Interrupt

The legacy interrupt assigned to the COM1 UART is fixed to IRQ3.

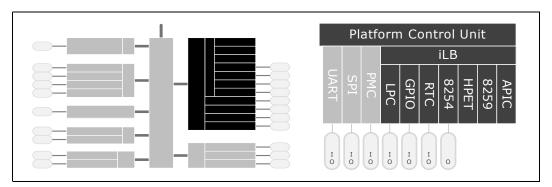
17.4 UART Enable/Disable

The COM1 UART may be enabled or disabled using the UART_CONT.COM1EN register bit. By default, the UART is disabled.

Note:

It is recommended that the UART be disabled during normal platform operation. An enabled UART can interfere with platform power management.

§



18 PCU - Intel Legacy Block (iLB) Overview

The Intel Legacy Block (iLB) is a collection of disparate functional blocks that are critical for implementing the legacy PC platform features. These blocks include:

- PCU iLB Low Pin Count (LPC) Bridge
- PCU iLB Real Time Clock (RTC)
- PCU iLB 8254 Timers
- PCU iLB High Precision Event Timer (HPET)
- PCU iLB GPIO
- PCU iLB IO APIC
- PCU iLB 8259 Programmable Interrupt Controllers (PIC)

The iLB also implements a register range for configuration of some of those blocks along with support for Non-Maskable Interrupts (NMI).

18.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details as well as the subsequent sections.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 98. iLB Signals

Signal Name	Direction /Type	Description
ILB_NMI	I	Non-Maskable Interrupt: This is an NMI event indication into the SoC.
		This signal is muxed and may be used by other functions.

18.2 Features

18.2.1 Key Features

The key features of various blocks are as follows:

- LPC Interface
 - Supports Low Pin Count (LPC) 1.1 Specification
 - No support for DMA or bus mastering
 - Supports Trusted Platform Module (TPM) 1.2
- General Purpose Input Output
 - Legacy control interface for SoC GPIOs
- 8259 Programmable Interrupt Controller
 - Legacy interrupt support
 - 15 total interrupts through two cascaded controllers
- I/O Advanced Programmable Interrupt Controller
 - Legacy-free interrupt support
 - 87 total interrupts
- 8254
 - Legacy timer support
 - Three timers with fixed uses: System Timer, Refresh Request Signal and Speaker Tone
- HPET High Performance Event Timers
 - Legacy-free timer support
 - Three timers and one counter
- Real-Time Clock (RTC)
 - 242 byte RAM backed by battery (aka CMOS RAM)
 - Can generate wake/interrupt when time matches programmed value
 - I/O and indexed registers

18.2.2 Non-Maskable Interrupt

NMI support is enabled by setting the NMI Enable (NMI_EN) bit, at IO Port 70h, Bit 7, to 1b.

Non-Maskable Interrupts (NMIs) can be generated by several sources, as described in Table 99.

Table 99. NMI Sources

NMI Source	NMI Source Enabler/ Disabler	NMI Source Status	Alternate Configuration
SERR# goes active NOTE: A SERR# is only generated internally in the SoC)	NSC.SNE	NSC.SNS	All NMI sources may, alternatively, generate a SMI by setting GNMI.NMI2SMIEN=1b
IOCHK# goes active NOTE: A IOCHK# is only generated as a SERIRQ# frame	NSC.INE	NSC.INS	
ILB_NMI goes active NOTE: Active can be defined as being on the positive or negative edge of the signal using the GNMI.GNMIED register bit.	GNMI.GNMIED	GNMI.GNMIS	GNMI.NMI2SMIST for observing SMI status
Software sets the GNMI.NMIN register bit	GNMI.NMIN	GNMI.NMINS	

18.2.3 S0ix Support

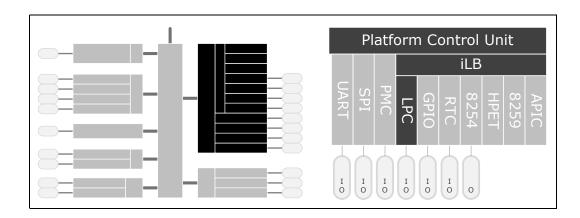
During S0i1, the iLB is kept running. During S0i2 & S0i3, the iLB is halted.

18.3 Use

18.3.1 S0ix Support

Prior to entry into S0i2 or S0i3 state, the driver/OS must set HPET_GCFG.EN to 0b to indicate RTD3hot status.

§



19 PCU - iLB - Low Pin Count (LPC) Bridge

The SoC implements an LPC Interface as described in the LPC 1.1 Specification. The Low Pin Count (LPC) bridge function of the SoC resides in PCI Device 31, Function 0.

Note:

In addition to the LPC bridge interface function, D31:F0 contains other functional units including interrupt controllers, timers, power management, system management, GPIO, and RTC.

19.1 Signal Descriptions

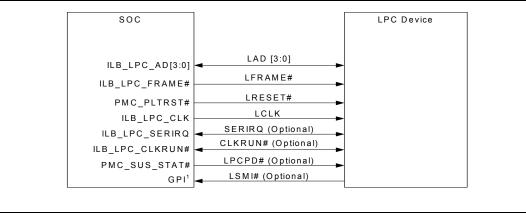
Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 100. LPC Signals

Signal Name	Direction/ Type	Description
ILB_LPC_AD[3:0]	I/O CMOS3.3/ 1.8	LPC Multiplexed Command, Address, Data: Internal pull-ups are provided for these signals. These signals are muxed and may be used by other functions.
ILB_LPC_CLK[0]	O CMOS3.3/ 1.8	LPC Clock [0] Out: 25 MHz PCI-like clock driven to LPC peripherals. These signals are muxed and may be used by other functions.
ILB_LPC_CLK[1]	O or I CMOS3.3/ 1.8	LPC Clock [1] Out: 25 MHz PCI-like clock driven to LPC peripherals. Can be configured as an input to compensate for board routing delays through Soft Strap. These signals are muxed and may be used by other functions.
ILB_LPC_CLKRUN#	I/OD CMOS3.3/ 1.8	LPC Clock Run: Input to determine the status of ILB_LPC_CLK and an open drain output used to request starting or speeding up ILB_LPC_CLK. This is a sustained tri-state signal used by the central resource to request permission to stop or slow ILB_LPC_CLK. The central resource is responsible for maintaining the signal in the asserted state when ILB_LPC_CLK is running and deasserts the signal to request permission to stop or slow ILB_LPC_CLK. An internal pull-up is provided for this signal. This signal is muxed and may be used by other functions.
ILB_LPC_FRAME#	O CMOS3.3/ 1.8	LPC Frame: This signal indicates the start of an LPC cycle, or an abort. This signal is muxed and may be used by other functions.
ILB_LPC_SERIRQ	I/O CMOS1.8	Serial Interrupt Request: This signal implements the serial interrupt protocol. This signal is muxed and may be used by other functions.


19.2 Features

The LPC interface to the SoC is shown in Figure 36. Note that the SoC implements all of the signals that are shown as optional, but peripherals are not required to do so.

Note: The LPC controller does not implement bus mastering cycles or DMA.

Figure 36. LPC Interface Diagram

NOTE: The General Purpose Input (GPI) must use a SMI capable GPIO: GPIO_S0_SC[7:0].

19.2.1 Memory Cycle Notes

For cycles below 16M, the LPC Controller will perform standard LPC memory cycles. For cycles targeting firmware (BIOS/EFI code only), firmware memory cycles are used. Only 8-bit transfers are performed. If a larger transfer appears, the LPC controller will break it into multiple 8-bit transfers until the request is satisfied.

If the cycle is not claimed by any peripheral (and subsequently aborted), the LPC Controller will return a value of all 1's to the CPU.

19.2.2 Trusted Platform Module (TPM) 1.2 Support

The LPC interface supports accessing Trusted Platform Module (TPM) 1.2 devices via the LPC TPM START encoding. Memory addresses within the range FED00000h to FED40FFFh will be accepted by the LPC Bridge and sent on LPC as TPM special cycles. No additional checking of the memory cycle is performed.

Note:

This is different to the FED00000h to FED4BFFFh range implemented on some other Intel components since no Intel $^{\circledR}$ Trusted Execution Technology (Intel $^{\circledR}$ TXT) transactions are supported.

19.2.3 FWH Cycle Notes

If the LPC controller receives any SYNC returned from the device other than short (0101), long wait (0110), or ready (0000) when running a FWH cycle, indeterminate results may occur. A FWH device is not allowed to assert an Error SYNC.

BIOS/EFI boot from LPC is not supported when Secure Boot is enabled.

19.2.4 Other Notes

All cycles that are not decoded internally, and are not targeted for LPC (i.e., configuration cycles, IO cycles above 64KB and memory cycles above 16MB), will be sent to LPC with ILB_LPC_FRAME# not asserted.

19.2.5 POST Code Redirection

Writes to addresses 80h - 8Fh in IO register space will also be passed to the LPC bus.

Note: Reads of these addresses do not result in any LPC transactions.

19.2.6 Power Management

19.2.6.1 LPCPD# Protocol

Same timings as for PMC_SUS_STAT#. After driving PMC_SUS_STAT# active, the SoC drives ILB_LPC_FRAME# low, and tri-states (or drives low) ILB_LPC_AD[3:0].

Note:

The Low Pin Count Interface Specification, Revision 1.1 defines the LPCPD# protocol where there is at least 30 μs from LPCPD# assertion to LRST# assertion. This specification explicitly states that this protocol only applies to entry/exit of low power states which does not include asynchronous reset events. The SoC asserts both PMC_SUS_STAT# (connects to LPCPD#) and ILB_PLTRST# (connects to LRST#) at the same time during a global reset. This is not inconsistent with the LPC LPCPD# protocol.

19.2.6.2 Clock Run (CLKRUN)

When there are no pending LPC cycles, and SERIRQ is in quiet mode, the SoC can shut down the LPC clock. The SoC indicates that the LPC clock is going to shut down by deasserting the ILB_LPC_CLKRUN# signal. LPC devices that require the clock to stay running should drive ILB_LPC_CLKRUN# low within 4 clocks of its de-assertion. If no device drives the signal low within 4 clocks, the LPC clock will stop. If a device asserts ILB_LPC_CLKRUN#, the SoC will start the LPC clock and assert ILB_LPC_CLKRUN#.

Note:

The CLKRUN protocol is disabled by default. Refer Section 19.3.2.2, "Clock Run Enable" on page 223 for further details.

19.2.7 Serialized IRQ (SERIRQ)

The interrupt controller supports a serial IRQ scheme. The signal used to transmit this information is shared between the interrupt controller and all peripherals that support serial interrupts. The signal line, ILB_LPC_SERIRQ, is synchronous to LPC clock, and follows the sustained tri-state protocol that is used by LPC signals. The serial IRQ protocol defines this sustained tri-state signaling in the following fashion:

• S - Sample Phase: Signal driven low

• R - Recovery Phase: Signal driven high

• T - Turn-around Phase: Signal released

The interrupt controller supports 21 serial interrupts. These represent the 15 ISA interrupts (IRQ0- 1, 3-15), the four PCI interrupts, and the control signals SMI# and IOCHK#. Serial interrupt information is transferred using three types of frames:

- Start Frame: ILB_LPC_SERIRQ line driven low by the interrupt controller to indicate the start of IRQ transmission
- Data Frames: IRQ information transmitted by peripherals. The interrupt controller supports 21 data frames.
- Stop Frame: ILB_LPC_SERIRQ line driven low by the interrupt controller to indicate end of transmission and next mode of operation.

19.2.7.1 Start Frame

The serial IRQ protocol has two modes of operation which affect the start frame:

- Continuous Mode: The interrupt controller is solely responsible for generating the start frame
- Quiet Mode: Peripheral initiates the start frame, and the interrupt controller completes it.

These modes are entered via the length of the stop frame.

Continuous mode must be entered first, to start the first frame. This start frame width is 8 LPC clocks. This is a polling mode.

In Quiet mode, the ILB_LPC_SERIRQ line remains inactive and pulled up between the Stop and Start Frame until a peripheral drives ILB_LPC_SERIRQ low. The interrupt controller senses the line low and drives it low for the remainder of the Start Frame. Since the first LPC clock of the start frame was driven by the peripheral, the interrupt controller drives ILB_LPC_SERIRQ low for 1 LPC clock less than in continuous mode. This mode of operation allows for lower power operation.

19.2.7.2 Data Frames

Once the Start frame has been initiated, the ILB_LPC_SERIRQ peripherals start counting frames based on the rising edge of ILB_LPC_SERIRQ. Each of the IRQ/DATA frames has exactly 3 phases of 1 clock each:

- Sample Phase: During this phase, a device drives ILB_LPC_SERIRQ low if its corresponding interrupt signal is low. If its corresponding interrupt is high, then the ILB_LPC_SERIRQ devices tri-state ILB_LPC_SERIRQ. ILB_LPC_SERIRQ remains high due to pull-up resistors.
- **Recovery Phase:** During this phase, a device drives ILB_LPC_SERIRQ high if it was driven low during the Sample Phase. If it was not driven during the sample phase, it remains tri-stated in this phase.
- Turn-around Phase: The device tri-states ILB_LPC_SERIRQ.

19.2.7.3 Stop Frame

After the data frames, a Stop Frame will be driven by the interrupt controller. ILB_LPC_SERIRQ will be driven low for two or three LPC clocks. The number of clocks is determined by the SCNT.MD register bit. The number of clocks determines the next mode, as indicated in Table 101.

Table 101. SERIRQ, Stop Frame Width to Operation Mode Mapping

Stop Frame Width	Next Mode	
Two LPC clocks	Quiet Mode: Any SERIRQ device initiates a Start Frame	
Three LPC clocks	Continuous Mode: Only the interrupt controller initiates a Start Frame	

19.2.7.4 Serial Interrupts Not Supported

There are four interrupts on the serial stream which are not supported by the interrupt controller. These interrupts are:

- IRQ0: Heartbeat interrupt generated off of the internal 8254 counter 0.
- IRQ8: RTC interrupt can only be generated internally.
- IRQ13: This interrupt (floating point error) is not supported.

The interrupt controller will ignore the state of these interrupts in the stream.

19.2.7.5 Data Frame Format and Issues

Table below shows the format of the data frames.

The other interrupts decoded via SERIRQ are also ANDed with the corresponding internal interrupts. For example, if IRQ10 is set to be used as the SCI, then it is ANDed with the decoded value for IRQ10 from the SERIRQ stream.

Table 102. SERIRQ Interrupt Mapping

Data Frame #	Interrupt	Clocks Past Start Frame	Comment
1	IRQ0	2	Ignored. Can only be generated via the internal 8524
2	IRQ1	5	Before port 60h latch
3	SMI#	8	Causes SMI# if low. Sets SMI_STS.ILB_SMI_STS register bit.
4	IRQ3	11	
5	IRQ4	14	
6	IRQ5	17	
7	IRQ6	20	
8	IRQ7	23	

Table 102. SERIRQ Interrupt Mapping

Data Frame #	Interrupt	Clocks Past Start Frame	Comment
9	IRQ8	26	Ignored. IRQ8# can only be generated internally
10	IRQ9	29	
11	IRQ10	32	
12	IRQ11	35	
13	IRQ12	38	Before port 60h latch
14	IRQ13	41	Ignored.
15	IRQ14	44	Ignored
16	IRQ15	47	
17	IOCHCK#	50	Same as ISA IOCHCK# going active.

19.2.7.6 SOix Support

During S0i2 and S0i3, the LPC and SERIRQ interfaces are disabled.

19.3 Use

19.3.1 LPC Clock Delay Compensation

In order to meet LPC interface AC timing requirements, a LPC clock loop back is required. The operation of this loop back can be configured in two ways:

- 1. On the SOC: In this configuration, ILB_LPC_CLK[0] is looped back on itself on the SOC pad.
 - a. Benefit:

ILB_LPC_CLK[0] and ILB_LPC_CLK[1] are both available for system clocking

b. Drawback:

Clock delay compensation is less effective at compensating for mainboard delay

c. Soft Strap & Register Requirements:

Soft Strap LPCCLK SLC = 0b

Configuration is reflected by register bit LPCC.LPCCLK_SLC=0b

Soft Strap LPCCLK1_ENB = 0b (ILB_LPC_CLK[1] disabled) or 1b (ILB_LPC_CLK[1] enabled)

- 2. Configuration is reflected by register bit LPCC.LPCCLK1EN=0b (ILB_LPC_CLK[1] disabled) or 1b (ILB_LPC_CLK[1] enabled)
- 3. On the main board: In this configuration, ILB_LPC_CLK[0] is looped back to ILB_LPC_CLK[1] on the main board.
 - a. Benefit:

Clock delay compensating in more effective at compensating for main board delay

b. Drawback:

Only ILB_LPC_CLK[0] is available for system clocking. ILB_LPC_CLK[1] must be disabled.

c. Soft Strap & Register Requirements:

Soft Strap LPCCLK_SLC = 1b

Configuration is reflected by register bit LPCC.LPCCLK_SLC=1b

Soft Strap LPCCLK1_ENB = 0b (ILB_LPC_CLK[1] disabled)

Configuration is reflected by register bit LPCC.LPCCLK1EN=0b

19.3.2 LPC Power Management

19.3.2.1 Clock Enabling

The LPC clocks can be enabled or disabled by setting or clearing, respectively, the LPCC.LPCCLK[1:0]EN bits.

19.3.2.2 Clock Run Enable

The Clock Run protocol is disabled by default and should only be enabled during operating system run-time, once all LPC devices have been initialized. The Clock Run protocol is enabled by setting the LPCC.CLKRUN_EN register bit.

19.3.3 SERIRQ Disable

Serialized IRQ support may be disabled by setting the OIC.SIRQEN bit to 0b.

19.4 References

- Low Pin Count Interface Specification, Revision 1.1 (LPC): http://www.intel.com/design/chipsets/industry/lpc.htm
- Serialized IRQ Support for PCI Systems, Revision 6.0: http://www.smsc.com/media/Downloads_Public/papers/serirq60.doc
- Implementing Industry Standard Architecture (ISA) with Intel® Express Chipsets (318244): http://www.intel.com/assets/pdf/whitepaper/318244.pdf

ξ



20 PCU - iLB - Real Time Clock (RTC)

The SoC contains a Motorola MC146818B-compatible real-time clock with 242 bytes of battery-backed RAM. The real-time clock performs twos key functions—keeping track of the time of day and storing system data, even when the system is powered down. The RTC operates on a 32.768 kHz crystal and a 3.3 V battery.

The RTC supports two lockable memory ranges. By setting bits in the configuration space, two 8-byte ranges can be locked to read and write accesses. This prevents unauthorized reading of passwords or other system security information.

The RTC supports a date alarm that allows for scheduling a wake up event up to 30 days in advance.

20.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- Direction: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 103. RTC Signals

	1	T .		
Signal Name	Direction /Type	Description		
ILB_RTC_X1	I Analog	Crystal Input 1: This signal is connected to the 32.768 kHz crystal. If no external crystal is used, the signal can be driven with the desired clock rate.		
ILB_RTC_X2	I Analog	Crystal Input 2: This signal is connected to the 32.768 kHz crystal. If no external crystal is used, the signal should be left floating.		
ILB_RTC_RST#	I	RTC Reset: An external RC circuit creates a time delay for the signal such that it will go high (de-assert) sometime after the battery voltage is valid. The RC time delay should be in the 10-20 ms range. When asserted, this signal resets all register bits in the RTC well except for GEN_PMCON1.RPS. NOTE: Unless registers are being cleared (only to be done in the G3 power state), the signal input must always be high when all other RTC power planes are on. NOTE: In the case where the RTC battery is dead or missing on the platform, the signal should be deasserted before the PMC_RSMRST# signal is deasserted.		
ILB_RTC_TEST#	I	RTC Battery Test: An external RC circuit creates a time delay for the signal such that it will go high (de-assert) sometime after the battery voltage is valid. The RC time delay should be in the 10-20 ms range. If the battery is missing/weak, this signal appears low (de-asserted) at boot just after the suspend power rail (V3P3A) is up since it will not have time to meet Vih when V3P3A is high. The weak/missing battery condition is reported in the GEN_PMCON1.RPS (RTC Power Status) register. When asserted, BIOS may clear the RTC CMOS RAM. NOTE: Unless CMOS is being cleared (only to be done in the G3 power state) or the battery is low, the signal input must always be high when all other RTC power planes are on. NOTE: This signal may also be used for debug purposes, as part of a XDP port.		
ILB_RTC_EXTPAD	I	External capacitor connection		

20.2 Features

The Real Time Clock (RTC) module provides a battery backed-up date and time keeping device. Three interrupt features are available: time of day alarm with once a second to once a month range, periodic rates of 122 ms to 500 ms, and end of update cycle notification. Seconds, minutes, hours, days, day of week, month, and year are counted. The hour is represented in twelve or twenty-four hour format, and data can be represented in BCD or binary format. The design is meant to be functionally compatible with the Motorola MS146818B. The time keeping comes from a 32.768 kHz oscillating source, which is divided to achieve an update every second. The lower 14 bytes on the

lower RAM block have very specific functions. The first ten are for time and date information. The next four (0Ah to 0Dh) are registers, which configure and report RTC functions. A host-initiated write takes precedence over a hardware update in the event of a collision.

20.2.1 Update Cycles

An update cycle occurs once a second, if the B.SET bit is not asserted and the divide chain is properly configured. During this procedure, the stored time and date are incremented, overflow checked, a matching alarm condition is checked, and the time and date are rewritten to the RAM locations. The update cycle starts at least 488 ms after A.UIP is asserted, and the entire cycle does not take more than 1984 ms to complete. The time and date RAM locations (00h to 09h) are disconnected from the external bus during this time.

20.3 Interrupts

The real-time clock interrupt is internally routed within the SoC both to the I/O APIC and the 8259. It is mapped to interrupt vector 8. This interrupt does not leave the SoC, nor is it shared with any other interrupt. IRQ8# from the ILB_LPC_SERIRQ stream is ignored. However, the High Performance Event Timers can also be mapped to IRQ8#; in this case, the RTC interrupt is blocked.

20.3.1 Lockable RAM Ranges

The RTC battery-backed RAM supports two 8-byte ranges that can be locked: the RC.UL and RC.LL register bits. When the locking bits are set, the corresponding range in the RAM is not readable or writable. A write cycle to those locations will have no effect. A read cycle to those locations will not return the location's actual value (resultant value is undefined).

Once a range is locked, the range can be unlocked only by a hard reset, which will invoke the BIOS and allow it to re-lock the RAM range.

20.3.2 Clearing Battery-Backed RTC CMOS RAM

Clearing CMOS RAM in an SoC-based platform can be done by using a jumper on ILB_RTC_TEST# or a GPI. Implementations should not attempt to clear CMOS by using a jumper to pull RTC_VCC low.

Note: The entire Extended Bank and bytes 0Eh-7Fh of the Standard Bank will be cleared.

20.3.2.1 Using ILB_RTC_TEST# to Clear the RTC CMOS RAM

A jumper on ILB_RTC_TEST# can be used to clear CMOS values. When ILB_RTC_TEST# is low, the GEN_PMCON1.RPS register bit will be set. BIOS can monitor the state of this bit, and manually clear the RTC CMOS array once the system is booted. The normal position will cause ILB_RTC_TEST# to be pulled up through a

weak pull-up resistor. This ILB_RTC_TEST# jumper technique allows the jumper to be moved and then replaced—all while the system is powered off. Then, once booted, the GEN_PMCON1.RPS bit can be detected in the set state.

20.3.3 Using GPI to Clear CMOS

A jumper on a GPI can also be used to clear CMOS values. BIOS should detect the setting of this GPI on system boot-up, and manually clear the CMOS array.

Note:

The GPI strap technique to clear CMOS requires multiple steps to implement. The system is booted with the jumper in new position, then powered back down. The jumper is replaced back to the normal position, then the system is rebooted again.

Warning: Do not implement a jumper on RTC_VCC to clear CMOS.

20.3.4 Clearing Battery Backed RTC Registers

Clearing Battery Backed RTC Registers in an SoC based platform can be done by using a jumper on ILB_RTC_RST#. Implementations should not attempt to clear the registers by using a jumper to pull RTC_VCC low. A jumper on ILB_RTC_RST# pulled to ground can be used to reset the state of those Battery Backed RTC Register configurations bit that reside in the RTC power well to their default state. Table 104 shows which bits are set to their default state when ILB_RTC_RST# is asserted low.

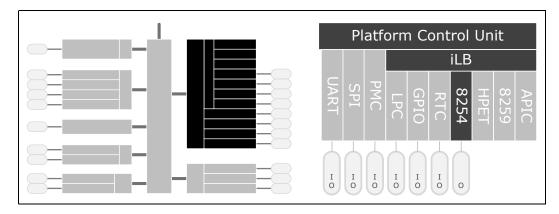
Table 104. Register Bits Reset by ILB_RTC_RST# Assertion

Register Bit	Bit(s)	Default State
RCRB_GENERAL_CONTROL.TS	1	xb
GEN_PMCON1.PME_B0_S5_DIS	15	0b
GEN_PMCON1.WOL_EN_OVRD	13	0b
GEN_PMCON1.DIS_SLP_X_STRCH_SUS_UP	12	0b
GEN_PMCON1.RTC Reserved	8	0b
GEN_PMCON1.SWSMI_RATESEL	7:6	00b
GEN_PMCON1.S4MAW	5:4	00b
GEN_PMCON1.S4ASE	3	0b
GEN_PMCON1.AG3E	0	0b
PM1_STS_EN.RTC_EN	26	0b
PM1_STS_EN.PWRBTNOR_STS	11	0b
PM1_CNT.SLP_TYP	12:10	0b
GPE0a_EN.PME_B0_EN	13	0b
GPE0a_EN.BATLOW_EN	10	0b

20.3.5 S0ix Support

During S0i3, the RTC interface is active.

20.4 References


Accessing the Real Time Clock Registers and the NMI Enable Bit: http://download.intel.com/design/intarch/PAPERS/321088.pdf

§

21 PCU - iLB - 8254 Timers

The 8254 contains three counters which have fixed uses including system timer and speaker tone. All registers are clocked by a 14.31818 MHz clock.

21.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 105. 8254 Signals

Signal Name	Direction /Type	Description	
ILB_8254_SPKR	0	Speaker: The signal drives an external speaker driver device, which in turn drives the system speaker. Upon PMC_PLTRST#, its output state is 0. This signal is muxed and may be used by other functions.	

21.2 Features

21.2.1 Counter 0, System Timer

This counter functions as the system timer by controlling the state of IRQ0 and is programmed for Mode 3 operation. The counter produces a square wave with a period equal to the product of the counter period (838 ns) and the initial count value. The

counter loads the initial count value one counter period after software writes the count value to the counter I/O address. The counter initially asserts IRQ0 and decrements the count value by two each counter period. The counter negates IRQ0 when the count value reaches 0. It then reloads the initial count value and again decrements the initial count value by two each counter period. The counter then asserts IRQ0 when the count value reaches 0, reloads the initial count value, and repeats the cycle, alternately asserting and negating IRQ0.

21.2.2 Counter 1, Refresh Request Signal

This counter is programmed for Mode 2 operation and impacts the period of the NSC.RTS register bit. Programming the counter to anything other than Mode 2 results in undefined behavior.

21.2.3 Counter 2, Speaker Tone

This counter provides the speaker tone and is typically programmed for Mode 3 operation. The counter provides a speaker frequency equal to the counter clock frequency (1.193 MHz) divided by the initial count value. The speaker must be enabled by a write to the NSC.SDE register bit.

21.2.4 S0ix Support

During S0i2 & S0i3, the 8254 timer is halted. A platform that requires the 8254 timer to be always active, should disable S0i2/3 using the S0ix_Enable register.

21.3 Use

21.3.1 Timer Programming

The counter/timers are programmed in the following fashion:

- 1. Write a control word to select a counter.
- 2. Write an initial count for that counter.
- 3. Load the least and/or most significant bytes (as required by Control Word Bits 5, 4) of the 16-bit counter.
- 4. Repeat with other counters.

Only two conventions need to be observed when programming the counters. First, for each counter, the control word must be written before the initial count is written. Second, the initial count must follow the count format specified in the control word (least significant byte only, most significant byte only, or least significant byte and then most significant byte).

A new initial count may be written to a counter at any time without affecting the counter's programmed mode. Counting is affected as described in the mode definitions. The new count must follow the programmed count format.

If a counter is programmed to read/write two-byte counts, the following precaution applies: A program must not transfer control between writing the first and second byte to another routine which also writes into that same counter. Otherwise, the counter will be loaded with an incorrect count.

The Control Word Register at port 43h controls the operation of all three counters. Several commands are available:

- **Control Word Command.** Specifies which counter to read or write, the operating mode, and the count format (binary or BCD).
- **Counter Latch Command.** Latches the current count so that it can be read by the system. The countdown process continues.
- **Read Back Command.** Reads the count value, programmed mode, the current state of the OUT pins, and the state of the Null Count Flag of the selected counter.

Table 106 lists the six operating modes for the interval counters.

Table 106.	Counter O	perating Mo	des
-------------------	-----------	-------------	-----

Mode	Function	Description
0	Out signal on end of count (=0)	Output is 0. When count goes to 0, output goes to 1 and stays at 1 until counter is reprogrammed.
1	Hardware re-triggerable one- shot	Output is 0. When count goes to 0, output goes to 1 for one clock time.
2	Rate generator (divide by n counter)	Output is 1. Output goes to 0 for one clock time, then back to 1 and counter is reloaded.
3	Square wave output	Output is 1. Output goes to 0 when counter rolls over, and counter is reloaded. Output goes to 1 when counter rolls over, and counter is reloaded, etc.
4	Software triggered strobe	Output is 1. Output goes to 0 when count expires for one clock time.
5	Hardware triggered strobe	Output is 1. Output goes to 0 when count expires for one clock time.

21.3.2 Reading from Interval Timer

It is often desirable to read the value of a counter without disturbing the count in progress. There are three methods for reading the counters: a simple read operation, counter Latch command, and the Read-Back command. Each is explained below.

With the simple read and counter latch command methods, the count must be read according to the programmed format; specifically, if the counter is programmed for two byte counts, two bytes must be read. The two bytes do not have to be read one right after the other. Read, write, or programming operations for other counters may be inserted between them.

21.3.2.1 Simple Read

The first method is to perform a simple read operation. The counter is selected through Port 40h (Counter 0), 41h (Counter 1), or 42h (Counter 2).

Note:

Performing a direct read from the counter does not return a determinate value, because the counting process is asynchronous to read operations. However, in the case of Counter 2, the count can be stopped by writing 0b to the NSC.TC2E register bit.

21.3.2.2 Counter Latch Command

The Counter Latch command, written to Port 43h, latches the count of a specific counter at the time the command is received. This command is used to ensure that the count read from the counter is accurate, particularly when reading a two-byte count. The count value is then read from each counter's Count register as was programmed by the Control register.

The count is held in the latch until it is read or the counter is reprogrammed. The count is then unlatched. This allows reading the contents of the counters on the fly without affecting counting in progress. Multiple Counter Latch Commands may be used to latch more than one counter. Counter Latch commands do not affect the programmed mode of the counter in any way.

If a counter is latched and then, some time later, latched again before the count is read, the second Counter Latch command is ignored. The count read is the count at the time the first Counter Latch command was issued.

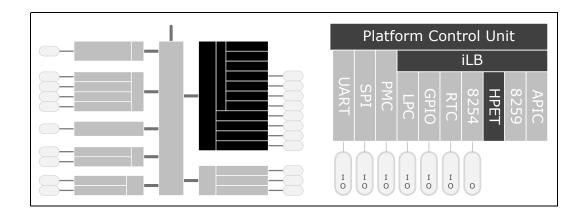
21.3.2.3 Read Back Command

The Read Back command, written to Port 43h, latches the count value, programmed mode, and current states of the OUT pin and Null Count flag of the selected counter or counters. The value of the counter and its status may then be read by I/O access to the counter address.

The Read Back command may be used to latch multiple counter outputs at one time. This single command is functionally equivalent to several counter latch commands, one for each counter latched. Each counter's latched count is held until it is read or reprogrammed. Once read, a counter is unlatched. The other counters remain latched until they are read. If multiple count Read Back commands are issued to the same counter without reading the count, all but the first are ignored.

The Read Back command may additionally be used to latch status information of selected counters. The status of a counter is accessed by a read from that counter's I/O port address. If multiple counter status latch operations are performed without reading the status, all but the first are ignored.

Both count and status of the selected counters may be latched simultaneously. This is functionally the same as issuing two consecutive, separate Read Back commands. If multiple count and/or status Read Back commands are issued to the same counters without any intervening reads, all but the first are ignored.


If both count and status of a counter are latched, the first read operation from that counter returns the latched status, regardless of which was latched first. The next one or two reads, depending on whether the counter is programmed for one or two type counts, returns the latched count. Subsequent reads return unlatched count.

§

22 PCU - iLB - High Precision Event Timer (HPET)

This function provides a set of timers that to be used by the operating system for timing events. One timer block is implemented, containing one counter and three timers.

22.1 Features

22.1.1 Non-Periodic Mode - All Timers

This mode can be thought of as creating a one-shot. When a timer is set up for non-periodic mode, it generates an interrupt when the value in the main counter matches the value in the timer's comparator register. As timers 1 and 2 are 32-bit, they will generate another interrupt when the main counter wraps.

TOCV cannot be programmed reliably by a single 64-bit write in a 32-bit environment unless only the periodic rate is being changed. If TOCV needs to be re-initialized, the following algorithm is performed:

- 1. Set T0C.TVS
- 2. Set T0CV[31:0]
- 3. Set T0C.TVS
- 4. Set T0CV[63:32]

Every timer is required to support the non-periodic mode of operation.

22.1.2 Periodic Mode - Timer 0 only

When set up for periodic mode, when the main counter value matches the value in TOCV, an interrupt is generated (if enabled). Hardware then increases TOCV by the last value written to TOCV. During run-time, TOCV can be read to find out when the next periodic interrupt will be generated. Software is expected to remember the last value written to TOCV.

Example: if the value written to TOCV is 00000123h, then

- An interrupt will be generated when the main counter reaches 00000123h.
- T0CV will then be adjusted to 00000246h.
- Another interrupt will be generated when the main counter reaches 00000246h.
- TOCV will then be adjusted to 00000369h.

When the incremented value is greater than the maximum value possible for ToCV, the value will wrap around through 0. For example, if the current value in a 32-bit timer is FFFF0000h and the last value written to this register is 20000, then after the next interrupt the value will change to 00010000h.

If software wants to change the periodic rate, it writes a new value to ToCV. When the timer's comparator matches, the new value is added to derive the next matching point. If software resets the main counter, the value in the comparator's value register must also be reset by setting ToC.TVS. To avoid race conditions, this should be done with the main counter halted. The following usage model is expected:

- 1. Software clears GCFG.EN to prevent any interrupts.
- 2. Software clears the main counter by writing a value of 00h to it.
- 3. Software sets T0C.TVS.
- 4. Software writes the new value in TOCV.
- 5. Software sets GCFG.EN to enable interrupts.

22.1.2.1 Interrupts

If each timer has a unique interrupt and the timer has been configured for edgetriggered mode, then there are no specific steps required. If configured to leveltriggered mode, then its interrupt must be cleared by software by writing a '1' back to the bit position for the interrupt to be cleared.

Interrupts associated with the various timers have several interrupt mapping options. Software should mask GCFG.LRE when reprogramming HPET interrupt routing to avoid spurious interrupts.

22.1.2.2 Mapping Option #1: Legacy Option (GCFG.LRE set)

This forces the following mapping:

Table 107. 8254 Interrupt Mapping

Time r	8259 Mapping	APIC Mapping	Comment		
0	IRQ0	IRQ2	The 8254 timer will not cause any interrupts		
1	IRQ8	IRQ8	RTC will not cause any interrupts.		
2	T2C.IR	T2C.IRC			

22.1.2.3 Mapping Option #2: Standard Option (GCFG.LRE cleared)

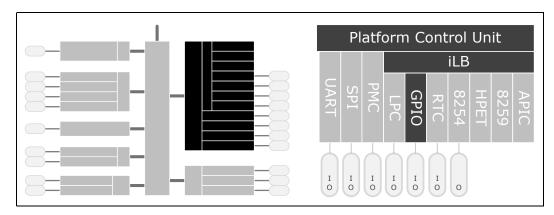
Each timer has its own routing control. The interrupts can be routed to various interrupts in the I/O APIC. T[2:0]C.IRC indicates which interrupts are valid options for routing. If a timer is set for edge-triggered mode, the timers should not be shared with any other interrupts.

22.1.3 S0ix Support

During S0i1, the HPET is kept running. During S0i2 and S0i3, the HPET is halted.

Prior to entry into S0i2 or S0i3 state, the driver/OS must set HPET_GCFG.EN to 0b to indicate RTD3 $_{hot}$ status.

22.2 References


IA-PC HPET (High Precision Event Timers) Specification, Revision 1.0a: http://www.intel.com/hardware design/hpetspec_1.pdf

§

23 PCU - iLB - GPIO

102 GPIOs are available for use during the S0 ACPI state, and 44 are available for use from S5 to S0 (SUS). Most of these GPIOs can be used as legacy GPIOs through IO registers. This section describes their use as legacy GPIOs.

23.1 Signal Descriptions

Refer Chapter 2, "Physical Interfaces" for additional details.

The signal description table has the following headings:

- **Signal Name:** The name of the signal/pin
- **Direction**: The buffer direction can be either input, output, or I/O (bidirectional)
- Type: The buffer type found in Chapter 29, "Electrical Specifications"
- **Description**: A brief explanation of the signal's function

Table 108. GPIO Signals

Signal Name	Direction /Type	Description
GPIO_S0_SC[101:0]	I/O Varies	These GPIO pins are powered and active in S0 only. Many of these are multiplexed with other functions and may have different default pin names.
GPIO_S5[43:0]	I/O Varies	These GPIO pins are powered and active in S5-S0 (SUS). Many of these are multiplexed with other functions and may have different default pin names. Some are used as straps.

23.2 Features

GPIOs can generate general purpose events (GPEs) on rising and/or falling edges.

23.3 Use

Each GPIO has six registers that control how it is used, or report its status:

- Use Select
- I/O Select
- GPIO Level
- Trigger Positive Edge
- Trigger Negative Edge
- Trigger Status

The Use Select register selects a GPIO pin as a GPIO, or leaves it as its programmed function. This register must be set for all other registers to affect the GPIO.

The I/O Select register determines the direction of the GPIO.

The Trigger Positive Edge and Trigger Negative Edge registers enable general purpose events on a rising and falling edge respectively. This only applies to GPIOs set as input.

The Trigger Status register is used by software to determine if the GPIO triggered a GPE. This only applies to GPIOs set as input and with one or both of the Trigger modes enabled.

Additionally, there is one additional register for each S5 GPIO:

• Wake Enable

This register allows S5 GPIOs to trigger a wake event based on the Trigger registers' settings.

23.4 **GPIO Registers**

Registers are broken into two groups: memory mapped and legacy IO registers. Memory mapped registers are used by BIOS and firmware to select the configurable function of the GPIO and setup analog states needed for that function's operation. They are named based on the pin/ball name. Legacy IO registers are the more traditional GPIO control/status type, and are used when the function selected is a traditional GPIO (direction, level, use registers). They are numbered based on the GPIO number.

Each group is further broken down into SCORE (internal partition naming) and SSUS. SCORE are for the GPIO's named GPIO_SO_SC[xxx], while SSUS are for the GPIO's named GPIO_S5[xx].

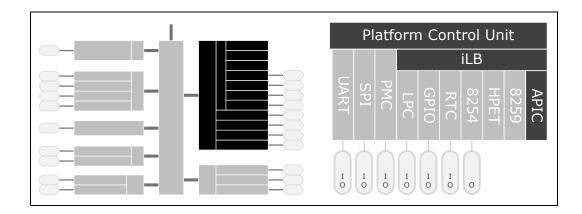
Note: All GPIO registers must be accessed as double words. Unpredictable results will occur

otherwise.

Note: All memory mapped GPIO *_PAD_VAL's must set Ienenb = 0 in order to read the

pad_val of the GPIO. This applies to RO GPIO's as well.

vGPIO's are virtual GPIO's for use by software to generate interrupts. They are not tied


to physical pins.

§

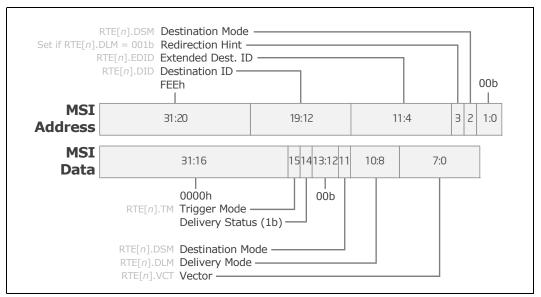
24 PCU - iLB - IO APIC

The IO Advanced Programmable Interrupt Controller (APIC) is used to support line interrupts more flexibly than the 8259 PIC. Line interrupts are routed to it from multiple sources, including legacy devices, via the interrupt decoder and serial IRQs, or they are routed to it from the interrupt router in the iLB. These line based interrupts are then used to generate interrupt messages targeting the local APIC in the processor.



24.1 Features

- 87 interrupt lines
 - IRQ0-86
- Edge or level trigger mode per interrupt
- Active low or high polarity per interrupt
- Works with local APIC in processor via MSIs
- MSIs can target specific processor core
- Established APIC programming model


Figure 37. Detailed Block Diagram

MSIs generated by the I/O APIC are sent as 32-bit memory writes to the Local APIC. The address and data of the write transaction are used as follows.

Figure 38. MSI Address and Data

Destination ID (DID) and Extended Destination ID (EDID) are used to target a specific processor core's local APIC.

24.2 Use

The I/O APIC contains indirectly accessed I/O APIC registers and normal memory mapped registers. There are three memory mapped registers:

- Index Register (IDX)
- Window Register (WDW)
- End Of Interrupt Register (EOI)

The Index register selects an indirect I/O APIC register (ID/VS/RTE[n]) to appear in the Window register.

The Window register is used to read or write the indirect register selected by the Index register.

The EOI register is written to by the Local APIC in the processor. The I/O APIC compares the lower eight bits written to the EOI register to the Vector set for each interrupt (RTE.VCT). All interrupts that match this vector will have their RTE.RIRR register cleared. All other EOI register bits are ignored.

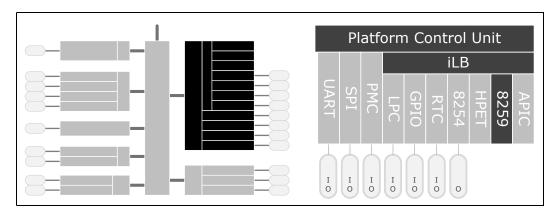
24.3 Indirect I/O APIC Registers

These registers are selected with the IDX register, and read/written through the WDW register. Accessing these registers must be done as DW requests, otherwise unspecified behavior will result. Software should not attempt to write to reserved registers.

Reserved registers may return non-zero values when read.

Note: There is one pair of redirection (RTE) registers per interrupt line. Each pair forms a 64-

bit RTE register.


Note: Specified offsets should be placed in IDX, not added to IDX.

§

25 PCU - iLB - 8259 Programmable Interrupt Controllers (PIC)

The SoC provides an ISA-compatible programmable interrupt controller (PIC) that incorporates the functionality of two, cascaded 8259 interrupt controllers.

25.1 Features

In addition to providing support for ISA compatible interrupts, this interrupt controller can also support PCI based interrupts (PIRQs) by mapping the PCI interrupt onto a compatible ISA interrupt line. Each 8259 controller supports eight interrupts, numbered 0-7. Table 109 shows how the controllers are connected.

Note:

The SoC does not implement any external PIRQ# signals. The PIRQs referred to in this section originate from the interrupt routing unit.

Table 109. Interrupt Controller Connections (Sheet 1 of 2)

8259	8259 Input	Connected Pin / Function			
Master	0	Internal Timer / Counter 0 output or HPET #0; determined by GCFG.LRE register bit			
	1	IRQ1 using SERIRQ, Keyboard Emulation			
	2	Slave controller INTR output			
	3	IRQ3 via SERIRQ, PIRQx or PCU UART 1			
	4	IRQ4 via SERIRQ or PIRQx			
	5	IRQ5 via SERIRQ or PIRQx			
	6	IRQ6 via SERIRQ or PIRQx			
	7	IRQ7 via SERIRQ or PIRQx			

Table 109. Interrupt Controller Connections (Sheet 2 of 2)

8259	8259 Input	Connected Pin / Function		
Slave	0	Inverted IRQ8# from internal RTC or HPET		
	1	IRQ9 via SERIRQ, SCI or PIRQx		
	2	IRQ10 via SERIRQ, SCI or PIRQx		
	3	IRQ11 via SERIRQ, SCI, HPET or PIRQx		
	4	IRQ12 via SERIRQ, PIRQx or mouse emulation		
	5	None		
	6	PIRQx		
	7	IRQ15 via SERIRQ or PIRQx o		

The SoC cascades the slave controller onto the master controller through master controller interrupt input 2. This means there are only 15 possible interrupts for the SoC PIC.

Interrupts can be programmed individually to be edge or level, except for IRQ0, IRQ2 and IRQ8#.

Note:

Active-low interrupt sources (such as a PIRQ#) are inverted inside the SoC. In the following descriptions of the 8259s, the interrupt levels are in reference to the signals at the internal interface of the 8259s, after the required inversions have occurred. Therefore, the term "high" indicates "active," which means "low" on an originating PIRQ#.

25.1.1 Interrupt Handling

25.1.1.1 Generating Interrupts

The PIC interrupt sequence involves three bits, from the IRR, ISR, and IMR, for each interrupt level. These bits are used to determine the interrupt vector returned, and status of any other pending interrupts. Table 110 defines the IRR, ISR, and IMR.

Table 110. Interrupt Status Registers

Bit	Description
IRR	Interrupt Request Register. This bit is set on a low to high transition of the interrupt line in edge mode, and by an active high level in level mode.
ISR	Interrupt Service Register. This bit is set, and the corresponding IRR bit cleared, when an interrupt acknowledge cycle is seen, and the vector returned is for that interrupt.
IMR	Interrupt Mask Register. This bit determines whether an interrupt is masked. Masked interrupts will not generate INTR.

25.1.1.2 Acknowledging Interrupts

The processor generates an interrupt acknowledge cycle that is translated into a Interrupt Acknowledge Cycle to the SoC. The PIC translates this command into two internal INTA# pulses expected by the 8259 controllers. The PIC uses the first internal INTA# pulse to freeze the state of the interrupts for priority resolution. On the second INTA# pulse, the master or slave sends the interrupt vector to the processor with the acknowledged interrupt code. This code is based upon the ICW2.IVBA bits, combined with the ICW2.IRL bits representing the interrupt within that controller.

Note:

References to ICWx and OCWx registers are relevant to both the master and slave 8259 controllers.

Table 111. Content of Interrupt Vector Byte

Master, Slave Interrupt	Bits [7:3]	Bits [2:0]	
IRQ7,15		111	
IRQ6,14	ICW2.IVBA	110	
IRQ5,13		101	
IRQ4,12		100	
IRQ3,11		011	
IRQ2,10		010	
IRQ1,9		001	
IRQ0,8		000	

25.1.1.3 Hardware/Software Interrupt Sequence

- 1. One or more of the Interrupt Request lines (IRQ) are raised high in edge mode, or seen high in level mode, setting the corresponding IRR bit.
- 2. The PIC sends INTR active to the processor if an asserted interrupt is not masked.
- 3. The processor acknowledges the INTR and responds with an interrupt acknowledge cycle.
- 4. Upon observing the special cycle, the SoC converts it into the two cycles that the internal 8259 pair can respond to. Each cycle appears as an interrupt acknowledge pulse on the internal INTA# pin of the cascaded interrupt controllers.
- 5. Upon receiving the first internally generated INTA# pulse, the highest priority ISR bit is set and the corresponding IRR bit is reset. On the trailing edge of the first pulse, a slave identification code is broadcast by the master to the slave on a private, internal three bit wide bus. The slave controller uses these bits to determine if it must respond with an interrupt vector during the second INTA# pulse.
- 6. Upon receiving the second internally generated INTA# pulse, the PIC returns the interrupt vector. If no interrupt request is present because the request was too short in duration, the PIC returns vector 7 from the master controller.

7. This completes the interrupt cycle. In AEOI mode the ISR bit is reset at the end of the second INTA# pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt subroutine.

25.1.2 Initialization Command Words (ICWx)

Before operation can begin, each 8259 must be initialized. In the SoC, this is a four byte sequence. The four initialization command words are referred to by their acronyms: ICW1, ICW2, ICW3, and ICW4.

The base address for each 8259 initialization command word is a fixed location in the I/O memory space: 20h for the master controller, and A0h for the slave controller.

25.1.2.1 ICW1

A write to the master or slave controller base address with data bit 4 equal to 1 is interpreted as a write to ICW1. Upon sensing this write, the PIC expects three more byte writes to 21h for the master controller, or A1h for the slave controller, to complete the ICW sequence.

A write to ICW1 starts the initialization sequence during which the following automatically occur:

- 1. Following initialization, an interrupt request (IRQ) input must make a low-to-high transition to generate an interrupt.
- 2. The Interrupt Mask Register is cleared.
- 3. IRQ7 input is assigned priority 7.
- 4. The slave mode address is set to 7.
- 5. Special mask mode is cleared and Status Read is set to IRR.

25.1.2.2 ICW2

The second write in the sequence (ICW2) is programmed to provide bits [7:3] of the interrupt vector that will be released during an interrupt acknowledge. A different base is selected for each interrupt controller.

25.1.2.3 ICW3

The third write in the sequence (ICW3) has a different meaning for each controller.

- For the master controller, ICW3 is used to indicate which IRQ input line is used to cascade the slave controller. Within the SoC, IRQ2 is used. Therefore, MICW3.CCC is set to a 1, and the other bits are set to 0s.
- For the slave controller, ICW3 is the slave identification code used during an interrupt acknowledge cycle. On interrupt acknowledge cycles, the master controller broadcasts a code to the slave controller if the cascaded interrupt won arbitration on the master controller. The slave controller compares this

identification code to the value stored in its ICW3, and if it matches, the slave controller assumes responsibility for broadcasting the interrupt vector.

25.1.2.4 ICW4

The final write in the sequence (ICW4) must be programmed for both controllers. At the very least, ICW4.MM must be set to a 1 to indicate that the controllers are operating in an Intel Architecture-based system.

25.1.3 Operation Command Words (OCW)

These command words reprogram the Interrupt controller to operate in various interrupt modes.

- OCW1 masks and unmasks interrupt lines.
- OCW2 controls the rotation of interrupt priorities when in rotating priority mode, and controls the EOI function.
- OCW3 sets up ISR/IRR reads, enables/disables the special mask mode (SMM), and enables/disables polled interrupt mode.

25.1.4 Modes of Operation

25.1.4.1 Fully Nested Mode

In this mode, interrupt requests are ordered in priority from 0 through 7, with 0 being the highest. When an interrupt is acknowledged, the highest priority request is determined and its vector placed on the bus. Additionally, the ISR for the interrupt is set. This ISR bit remains set until: the processor issues an EOI command immediately before returning from the service routine; or if in AEOI mode, on the trailing edge of the second INTA#. While the ISR bit is set, all further interrupts of the same or lower priority are inhibited, while higher levels generate another interrupt.

Interrupt priorities can be changed in the rotating priority mode.

25.1.4.2 Special Fully-Nested Mode

This mode is used in the case of a system where cascading is used, and the priority has to be conserved within each slave. In this case, the special fully-nested mode is programmed to the master controller. This mode is similar to the fully-nested mode with the following exceptions:

- When an interrupt request from a certain slave is in service, this slave is not locked
 out from the master's priority logic and further interrupt requests from higher
 priority interrupts within the slave are recognized by the master and initiate
 interrupts to the processor. In the normal-nested mode, a slave is masked out
 when its request is in service.
- When exiting the Interrupt Service routine, software has to check whether the interrupt serviced was the only one from that slave. This is done by sending a Non-

Specific EOI command to the slave and then reading its ISR. If it is 0, a non-specific EOI can also be sent to the master.

25.1.4.3 Automatic Rotation Mode (Equal Priority Devices)

In some applications, there are a number of interrupting devices of equal priority. Automatic rotation mode provides for a sequential 8-way rotation. In this mode, a device receives the lowest priority after being serviced. In the worst case, a device requesting an interrupt has to wait until each of seven other devices are serviced at most once.

There are two ways to accomplish automatic rotation using OCW2.REOI; the Rotation on Non-Specific EOI Command (OCW2.REOI=101b) and the rotate in automatic EOI mode which is set by (OCW2.REOI=100b).

25.1.4.4 Specific Rotation Mode (Specific Priority)

Software can change interrupt priorities by programming the bottom priority. For example, if IRQ5 is programmed as the bottom priority device, then IRQ6 is the highest priority device. The Set Priority Command is issued in OCW2 to accomplish this, where: OCW2.REOI=11xb, and OCW2.ILS is the binary priority level code of the bottom priority device.

In this mode, internal status is updated by software control during OCW2. However, it is independent of the EOI command. Priority changes can be executed during an EOI command by using the Rotate on Specific EOI Command in OCW2 (OCW2.REOI=111b) and OCW2.ILS=IRQ level to receive bottom priority.

25.1.4.5 Poll Mode

Poll mode can be used to conserve space in the interrupt vector table. Multiple interrupts that can be serviced by one interrupt service routine do not need separate vectors if the service routine uses the poll command. Poll mode can also be used to expand the number of interrupts. The polling interrupt service routine can call the appropriate service routine, instead of providing the interrupt vectors in the vector table. In this mode, the INTR output is not used and the microprocessor internal Interrupt Enable flip-flop is reset, disabling its interrupt input. Service to devices is achieved by software using a Poll command.

The Poll command is issued by setting OCW3.PMC. The PIC treats its next I/O read as an interrupt acknowledge, sets the appropriate ISR bit if there is a request, and reads the priority level. Interrupts are frozen from the OCW3 write to the I/O read. The byte returned during the I/O read contains a 1 in Bit 7 if there is an interrupt, and the binary code of the highest priority level in Bits 2:0.

25.1.4.6 Edge and Level Triggered Mode

In ISA systems this mode is programmed using ICW1.LTIM, which sets level or edge for the entire controller. In the SoC, this bit is disabled and a register for edge and level triggered mode selection, per interrupt input, is included. This is the Edge/Level control Registers ELCR1 and ELCR2.

If an ELCR bit is 0, an interrupt request will be recognized by a low-to-high transition on the corresponding IRQ input. The IRQ input can remain high without generating another interrupt. If an ELCR bit is 1, an interrupt request will be recognized by a high level on the corresponding IRQ input and there is no need for an edge detection. The interrupt request must be removed before the EOI command is issued to prevent a second interrupt from occurring.

In both the edge and level triggered modes, the IRQ inputs must remain active until after the falling edge of the first internal INTA#. If the IRQ input goes inactive before this time, a default IRQ7 vector is returned.

25.1.5 End of Interrupt (EOI) Operations

An EOI can occur in one of two fashions: by a command word write issued to the PIC before returning from a service routine, the EOI command; or automatically when the ICW4.AEOI bit is set to 1.

25.1.5.1 Normal End of Interrupt

In normal EOI, software writes an EOI command before leaving the interrupt service routine to mark the interrupt as completed. There are two forms of EOI commands: Specific and Non-Specific. When a Non-Specific EOI command is issued, the PIC clears the highest ISR bit of those that are set to 1. Non-Specific EOI is the normal mode of operation of the PIC within the SoC, as the interrupt being serviced currently is the interrupt entered with the interrupt acknowledge. When the PIC is operated in modes that preserve the fully nested structure, software can determine which ISR bit to clear by issuing a Specific EOI.

An ISR bit that is masked is not cleared by a Non-Specific EOI if the PIC is in the special mask mode. An EOI command must be issued for both the master and slave controller.

25.1.5.2 Automatic End of Interrupt Mode

In this mode, the PIC automatically performs a Non-Specific EOI operation at the trailing edge of the last interrupt acknowledge pulse. From a system standpoint, this mode should be used only when a nested multi-level interrupt structure is not required within a single PIC. The AEOI mode can only be used in the master controller and not the slave controller.

Note:

Both the master and slave PICs have an AEOI bit: MICW4.AEOI and SICW4.AEOI respectively. Only the MICW4.AEOI bit should be set by software. The SICW4.AEOI bit should not be set by software.

25.1.6 Masking Interrupts

25.1.6.1 Masking on an Individual Interrupt Request

Each interrupt request can be masked individually by the Interrupt Mask Register (IMR). This register is programmed through OCW1. Each bit in the IMR masks one interrupt channel. Masking IRQ2 on the master controller masks all requests for service from the slave controller.

25.1.6.2 Special Mask Mode

Some applications may require an interrupt service routine to dynamically alter the system priority structure during its execution under software control. For example, the routine may wish to inhibit lower priority requests for a portion of its execution but enable some of them for another portion.

The special mask mode enables all interrupts not masked by a bit set in the Mask register. Normally, when an interrupt service routine acknowledges an interrupt without issuing an EOI to clear the ISR bit, the interrupt controller inhibits all lower priority requests. In the special mask mode, any interrupts may be selectively enabled by loading the Mask Register with the appropriate pattern.

The special mask mode is set by OCW3.ESMM=1b & OCW3.SMM=1b, and cleared where OCW3.ESMM=1b & OCW3.SMM=0b.

25.1.7 S0ix Support

During S0i2 & S0i3, the 8259 PICs are disabled. A platform that requires the 8259 PICs to be always active, should disable S0i2/3 using the S0ix_Enable register.

ξ

26 PCU - iLB - Interrupt Decoding and Routing

The interrupt decoder is responsible for receiving interrupt messages from other devices in the SoC and decoding them for consumption by the interrupt router, the PCU - iLB - 8259 Programmable Interrupt Controllers (PIC) and/or the PCU - iLB - IO APIC.

The interrupt router is responsible for mapping each incoming interrupt to the appropriate PIRQx, for consumption by the PCU - iLB - 8259 Programmable Interrupt Controllers (PIC) and/or PCU - iLB - IO APIC.

26.1 Features

26.1.1 Interrupt Decoder

The interrupt decoder receives interrupt messages from devices in the SoC. These interrupts can be split into two primary groups:

- For consumption by the interrupt router
- For consumption by the 8259 PIC

26.1.1.1 For Consumption by the Interrupt Router

When a PCI-mapped device in the SoC asserts or de-asserts an INT[A:D] interrupt, an interrupt message is sent to the decoder. This message is decoded to indicate to the interrupt router which specific interrupt is asserted or de-asserted and which device the INT[A:D] interrupt originated from.

26.1.1.2 For Consumption by the 8259 PIC

When a device in the SoC asserts or de-asserts a legacy interrupt (IRQ), an interrupt message is sent to the decoder. This message is decoded to indicate to the 8259 PIC, which specific interrupt (IRQ[3, 4, 14 or 15]) was asserted or de-asserted.

26.1.2 Interrupt Router

The interrupt router aggregates the INT[A:D] interrupts for each PCI-mapped device in the SoC, received from the interrupt decoder, and the INT[A:D] interrupts direct from the Serialized IRQ controller. It then maps these aggregated interrupts to 8 PCI based interrupts: PIRQ[A:H]. This mapping is configured using the IR[31:0] registers.

PCI based interrupts PIRQ[A:H] are then available for consumption by either the 8259 PICs or the IO-APIC, depending on the configuration of the 8 PIRQx Routing Control Registers: PIRQA, PIQRB, PIRQC, PIRQD, PIRQE, PIRQF, PIRQG, PIRQH.

26.1.2.1 Routing PCI Based Interrupts to 8259 PIC

The interrupt router can be programmed to allow PIRQA-PIRQH to be routed internally to the 8259 as ISA compatible interrupts IRQ 3–7, 9–12 & 14–15. The assignment is programmable through the 8 PIRQx Routing Control Registers: PIRQA, PIQRB, PIRQC, PIRQD, PIRQE, PIRQF, PIRQG, PIRQH. One or more PIRQs can be routed to the same IRQ input. If ISA Compatible Interrupts are not required, the Route registers can be programmed to disable steering.

The PIRQx# lines are defined as active low, level sensitive. When a PIRQx# is routed to specified IRQ line, software must change the IRQ's corresponding ELCR bit to level sensitive mode. The SoC internally inverts the PIRQx# line to send an active high level to the PIC. When a PCI interrupt is routed onto the PIC, the selected IRQ can no longer be used by an active high device (through SERIRQ). However, active low interrupts can share their interrupt with PCI interrupts.

§

27 Power Management

This section provides information on the following power management topics:

- ACPI States
- Processor Core
- Integrated Graphics Controller

27.1 Power Management Features

- ACPI System States support (S0, S0i1, S0i2, S0i3, S4, S5)
- Processor Core/Package States support (C0 C7)
- SoC Graphics Adapter States support D0 D3.
- Supports CPU and GFx Burst
- Dynamic I/O power reductions (disabling sense amps on input buffers, tri-stating output buffers)
- · Active power down of Display links

27.2 Power Management States Supported

The Power Management states supported by the processor are described in this section.

27.2.1 S-State Definition

27.2.1.1 S0 - Full On

This is the normal operating state of the processor. In S0, the core processor will transition in and out of the various processor C-States and P-States.

27.2.1.2 S0i1 - Low Latency Standby State

The micro-architectural state of processor and DRAM content are preserved.

27.2.1.3 S0i2 - Lower Latency Standby State

The S0i2 states extends S0i1 with the additional power saving of "parking" the SoC clock distribution. The DRAM content is preserved. The PMC_SLP_S0iX# signal is asserted by the SoC.

27.2.1.4 S0i3 - Longer Latency Standby State

S0i3 state extends on the S0i2 state by completely stopping the SoC XOSC. The micro architectural state of processor and the DRAM content is preserved. The PMC_SLP_S0iX# signal continues to be asserted by the SoC.

27.2.1.5 S4 - Suspend to Disk (Hibernate)

S4 is a suspend state in which most power planes of the processor are turned off, except for the suspend and RTC well. In this ACPI state, system context is saved to the hard disk.

Key features:

- No activity is allowed.
- All power wells are disabled, except for the suspend and RTC well.

27.2.1.6 S5 - Soft Off

From a hardware perspective the S5 state is identical to the S4 state. The difference is purely software; software does not write system context to hard disk when entering S5.

The following table shows the differences in the sleeping states with regards to the processor's output signals.

Table 112. SoC Sx-States to SLP_S*#

State	S0	S4	S5	Reset w/o Power Cycle	Reset w/ Power Cycle
CPU Executing	In C0	OFF	OFF	No	OFF
PMC_SLP_S4#	HIGH	LOW	LOW	HIGH	LOW
S0 Power Rails	ON	OFF	OFF	ON	OFF
PMC_PLTRST#	0	1	1	1	1
PMC_SUS_STAT#	HIGH	LOW	LOW	HIGH	LOW

NOTE: The processor treats S4 and S5 requests the same. The processor does not have PMC_SLP_S5#. PMC_SUS_STAT# is required to drive low (asserted) even if core well is left on because PMC_SUS_STAT# also warns of upcoming reset.

27.2.2 System States

Table 114. General Power States for System

States/Sub- states	Legacy Name / Description		
G0/S0/C0	FULL ON: CPU operating. Individual devices may be shut down to save power. The different CPU operating levels are defined by Cx states.		
G0/S0/Cx	Cx State: CPU manages C-state itself.		
G0/S0i1	S0i1 State: Low power platform active state. All DRAM and IOSF traffic are halted. PLL are configured to be off. This state allows MP3 playing using LPE engine		
G0/S0i2	S0i2 State: The SoC clocks and oscillators are parked		
G0/S0i3	S0i3 State: All SoC clocks and oscillators are turned off		
G1/S4	Suspend-To-Disk (STD): The context of the system is maintained on the disk. All of the power is shut down except power for the logic to resume. The S4 and S5 states are treated the same.		
G2/S5	Soft-Off: System context is not maintained. All of the power is shut down except power for the logic to restart. A full boot is required to restart. A full boot is required when waking. The S4 and S5 states are treated the same.		
G3	Mechanical OFF. System content is not maintained. All power shutdown except for the RTC. No "Wake" events are possible, because the system does not have any power. This state occurs if the user removes the batteries, turns off a mechanical switch, or if the system power supply is at a level that is insufficient to power the "waking" logic. When system power returns, transition will depend on the state just prior to the entry to G3.		

Table 115 shows the transitions rules among the various states. Note that transitions among the various states may appear to temporarily transition through intermediate states. These intermediate transitions and states are not listed in the table.

Table 115. ACPI PM State Transition Rules (Sheet 1 of 2)

Present State	Transition Trigger	Next State	
G0/S0/C0	IA Code MWAIT or LVL Rd	C0/S0/Cx	
	PM1_CNT.SLP_EN bit set	G1/Sx or G2/S5 state (specified by PM1_CNT.SLP_TYP)	
	Power Button Override	G2/S5	
	Mechanical Off/Power Failure	G3	
G0/S0/Cx	Cx break events which include: CPU snoop, MSI, Legacy Interrupt, AONT timer	G0/S0/C0	
	Power Button Override	G2/S5	
	System Power Failure	G3	

Table 115. ACPI PM State Transition Rules (Sheet 2 of 2)

Present State	Transition Trigger	Next State	
G1/S4	Any Enabled Wake Event	G0/S0/C0	
	Power button Override	G2/S5	
	Resume Well Power Failure	G3	
G2/S5	Any Enabled Wake Event	G0/S0/C0	
	Resume Well Power Failure	G3	
G3	Power Returns	Option to go to SO/CO (reboot) or G2/S5 (stay off until power button pressed or other enabled wake event) or G1/S4 (if system state was S4 prior to the power failure). Some wake events are preserved through a power failure.	

27.2.3 Processor States

Table 116. Processor Core/ States Support

State	Description	
C0	Active mode, processor executing code	
C1	AutoHALT state	
C1E	AutoHALT State with lowest frequency and voltage operating point.	
C6	Deep Power Down. Prior to entering the Deep Power Down Technology (code named C6) State, The core process will flush its cache and save its core context to a special on die SRAM on a different power plane. Once Deep Power Down Technology (code named C6) sequence has completed. The core processor's voltage is completely shut off.	
C7	Execution cores in this state behave similarly to the C6 state. Voltage is removed from the system agent domain	

27.2.4 Integrated Graphics Display States

Table 117. SoC Graphics Adapter State Control

State Description	
D0	Full on, Display active
D3	Power off display

27.2.5 Integrated Memory Controller States

Table 118. Main Memory States

States	Description		
Powerup	CKE asserted. Active mode.		
Precharge Powerdown	CKE de-asserted (not self-refresh) with all banks closed.		
Active Powerdown	CKE de-asserted (not self-refresh) with at least one bank active.		
Self-Refresh	CKE de-asserted using device self-refresh		

27.2.6 Interface State Combinations

Table 119. G, S and C State Combinations

Global (G) State	Sleep (S) State	Processor Core (C) State	Processor State	System Clocks	Description
G0	S0	C0	Full On On		Full On
G0	S0	C1/C1E	Auto-Halt On		Auto-Halt
G0	S0	C6	Deep Power On Down		Deep Power Down
G0	S0ix	C7	Deep Power Down	On	Deep Power Down
G1	S4	Power off		Off except RTC & internal ring OSC	Suspend to Disk
G2	S5	Power off		Off except RTC & internal ring OSC	Soft Off
G3	NA	Power Off		Power off	Hard Off

Table 120. D, S and C State Combinations

Graphics Adapter (D) State	Sleep (S) State	(C) State	Description
D0	S0	C0	Full On, Displaying
D0	S0	C1	Auto-Halt, Displaying
D0	S0	C6	Deep Sleep, Display Off
D0	S0ix	C7	Deep Sleep, Display Off
D3	S0/S0ix	Any	Not Displaying
D3	S4		Not Displaying Suspend to disk Core power off

27.3 Processor Core Power Management

While executing code, Enhanced Intel SpeedStep[®] Technology optimizes the processor's frequency and core voltage based on workload. Each frequency and voltage operating point is defined by ACPI as a P-state. When the processor is not executing code, it is idle. A low-power idle state is defined by ACPI as a C-state. In general, lower power C-states have longer entry and exit latencies.

27.3.1 Enhanced Intel SpeedStep® Technology

The following are the key features of Enhanced Intel SpeedStep[®] Technology:

- Applicable to Processor Core Voltage and Graphic Core Voltage
- Multiple frequency and voltage points for optimal performance and power efficiency. These operating points are known as P-states.
- Frequency selection is software controlled by writing to processor MSRs. The voltage is optimized based on the selected frequency:
 - If the target frequency is higher than the current frequency, Core_VCC_S0ix is ramped up slowly to an optimized voltage. This voltage is signaled by the SVID signals to the voltage regulator. Once the voltage is established, the PLL locks on to the target frequency.
 - If the target frequency is lower than the current frequency, the PLL locks to the target frequency, then transitions to a lower voltage by signaling the target voltage on the SVID signals.
- The processor controls voltage ramp rates by requesting appropriate ramp rates from an external SVID controller.
- Because there is low transition latency between P-states, a significant number of transitions per second are possible.
- Thermal Monitor mode.
 - Refer to Chapter 28, "Thermal Management"

27.3.2 Dynamic Cache Sizing

Dynamic Cache Sizing allows the processor to flush and disable a programmable number of L2 cache ways upon each Deeper Sleep entry under the following condition:

- The C0 timer that tracks continuous residency in the Normal state, has not expired. This timer is cleared during the first entry into Deeper Sleep to allow consecutive Deeper Sleep entries to shrink the L2 cache as needed.
- The predefined L2 shrink threshold is triggered.

The number of L2 cache ways disabled upon each Deeper Sleep entry is configured in the BBL_CR_CTL3 MSR. The C0 timer is referenced through the CLOCK_CORE_CST_CONTROL_STT MSR. The shrink threshold under which the L2

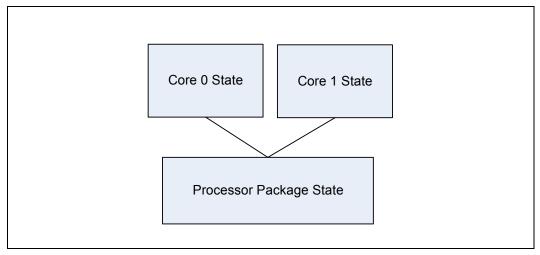
cache size is reduced is configured in the PMG_CST_CONFIG_CONTROL MSR. If the ratio is zero, then the ratio will not be taken into account for Dynamic Cache Sizing decisions.

27.3.3 Low-Power Idle States

When the processor core is idle, low-power idle states (C-states) are used to save power. More power savings actions are taken for numerically higher C-state. However, higher C-states have longer exit and entry latencies. Resolution of C-state occur at the thread, processor core, and processor core level.

27.3.3.1 Clock Control and Low-Power States

The processor core supports low power states at core level. The central power management logic ensures the entire processor core enters the new common processor core power state. For processor core power states higher than C1, this would be done by initiating a P_LVLx (P_LVL4 & P_LVL6) I/O read to all of the cores. States that require external intervention and typically map back to processor core power states. States for processor core include Normal (C0, C1).


The processor core implements two software interfaces for requesting low power states: MWAIT instruction extensions with sub-state specifies and P_LVLx reads to the ACPI P_BLK register block mapped in the processor core's I/O address space. The P_LVLx I/O reads are converted to equivalent MWAIT C-state requests inside the processor core and do not directly result in I/O reads on the processor core bus. The monitor address does not need to be setup before using the P_LVLx I/O read interface. The sub-state specifications used for each P_LVLx read can be configured in a software programmable MSR by BIOS.

The Cx state ends due to a break event. Based on the break event, the processor returns the system to C0. The following are examples of such break events:

- Any unmasked interrupt goes active
- Any internal event that will cause an NMI or SMI_B
- CPU Pending Break Event (PBE_B)
- MSI

Figure 39. Idle Power Management Breakdown of the Processor Cores

27.3.4 Processor Core C-States Description

The following state descriptions assume that both threads are in common low power state.

27.3.4.1 Core C0 State

The normal operating state of a core where code is being executed.

27.3.4.2 Core C1/C1E State

C1/C1E is a low power state entered when a core execute a HLT or MWAIT(C1/C1E) instruction.

A System Management Interrupt (SMI) handler returns execution to either Normal state or the C1/C1E state.

While a core is in C1/C1E state, it processes bus snoops and snoops from other threads. For more information on C1E, see "Package C1/C1E".

27.3.4.3 Core C6 State

Individual core can enter the C6 state by initiating a P_LVL3 I/O read or an MWAIT(C6) instruction. Before entering core C6, the core will save its architectural state to a dedicated SRAM. Once complete, a core will have its voltage reduced to zero volts. During exit, the core is powered on and its architectural state is restored.

There are various types of C-state:

• C6NS implies only the core should be powergated, but the L2 cache contents should be retained.

- C6IS implies the core should be powergated, and the L2 cache can be incrementally flushed to get some additional power savings.
- C6FS implies the core should be powergates, and the L2 cache can be fully flushed to get even more power savings.

27.3.4.4 Core C7 State

Individual core can enter the C7 state by initiating a P_LVL7 I/O read or an MWAIT(C7) instruction. The core C7 state exhibits the same behavior as core C6 state, but in addition gives permission to the internal Power Management logic to enter a package S0ix state if possible.

27.3.5 Package C-States

The processor supports C0, C1/C1E, C6 and C7 power states. The following is a summary of the general rules for package C-state entry. These apply to all package C-states unless specified otherwise:

- Package C-state request is determined by the lowest numerical core C-state amongst all cores.
- A package C-state is automatically resolved by the processor depending on the core idle power states and the status of the platform components.
- Each core can be at a lower idle power state than the package if the platform does not grant the processor permission to enter a requested package C-state.
- The platform may allow additional power savings to be realized in the processor.
- For package C-states, the processor is not required to enter C0 before entering any other C-state.
- Entry in to a package C-state may be subject to auto-demotion that is the processor may keep the package in a shallower package C-state then requested by the OS if the processor determines via heuristics that the shallower C-state results in better power/performance.

The processor exits a package C-state when a break event is detected. Depending on the type of break event, the processor does the following:

- If a core break event is received, the target core is activated and the break event message is forwarded to the target core.
 - If the break event is not masked, the target core enters the core C0 state and the processor enters package C0.
 - If the break event is masked, the processor attempts to re-enter its previous package state.
- If the break event was due to a memory access or snoop request.
 - But the platform did not request to keep the processor in a higher package Cstate, the package returns to its previous C-state.

 And the platform requests a higher power C-state, the memory access or snoop request is serviced and the package remains in the higher power C-state.

Table 121. Coordination of Core/Module Power States at the Package Level

Package C-State		Core/Module 1					
		CO	C1	C6NS	C6FS	С7	
0	CO	C0	C1 ¹	C0	C0	C0	
Module (C1	C0	C1 ¹	C1 ¹	C1 ¹	C1 ¹	
	C6NS	C0	C1 ¹	C6C	C6C	C6C	
Core/	C6FS	C0	C1 ¹	C6C	C6	C6	
O	C7	C0	C1 ¹	C6C	C6	C7	

NOTES:

- 1. If enabled, the package C-state will be C1E if all actives cores have resolved a core C1 state or higher.
- 2. C6C is C6-Conditional where the L2 cache is still powered.
- 3. 2 Cores of the SoC will make up one module.
- 4. C7 not supported.

27.3.5.1 Package C0

The normal operating state for the processor. The processor remains in the normal state when at least one of its cores is in the C0 state or when the platform has not granted permission to the processor to go into a low power state. Individual cores may be in lower power idle states while the package is in C0.

27.3.5.2 Package C1/C1E

No additional power reduction actions are taken in the package C1 state. However, if the C1E sub-state is enabled, the processor automatically transitions to the lowest supported core clock frequency, followed by a reduction in voltage.

The package enters the C1 low power state when:

- At least one core is in the C1 state.
- The other cores are in a C1 or lower power state.

The package enters the C1E state when:

- All cores have directly requested C1E via MWAIT(C1) with a C1E sub-state hint.
- All cores are in a power state lower that C1/C1E but the package low power state is limited to C1/C1E via the PMG_CST_CONFIG_CONTROL MSR.
- All cores have requested C1 using HLT or MWAIT(C1) and C1E auto-promotion is enabled in IA32_MISC_ENABLES.

No notification to the system occurs upon entry to ${\rm C1/C1E.}$

27.3.5.3 Package C6 State

A processor enters the package C6 low power state when:

- At least one core is in the C6 state.
- The other cores are in a C6 or lower power state, and the processor has been granted permission by the platform.
- The platform has not granted a request to a package C7 state but has allowed a package C6 state.

In package C6 state, all cores have saved their architectural state and have had their core voltages reduced to zero volts.

27.3.5.4 Package C7 State

A processor enters the package C7 low power state when all cores are in the C7 state. In package C7, the processor will take action to remove power from portions of the system agent.

Core break events are handled the same way as in package C6.

27.3.6 Graphics Power Management

27.3.6.1 Graphics and video decoder C-State

GFX C-State (GC6) and VED C-state (VC6) are designed to optimize the average power to the graphics and video decoder engines during times of idleness. GFX C-state is entered when the graphics engine, has no workload being currently worked on and no outstanding graphics memory transactions. VED S-state is entered when the video decoder engine has no workload being currently worked on and no outstanding video memory transactions. When the idleness condition is met, the processor will power gate the Graphics and video decoder engines.

27.3.6.2 Intel[®] Display Power Saving Technology (Intel[®] DPST)

The Intel DPST technique achieves backlight power savings while maintaining visual experience. This is accomplished by adaptively enhancing the displayed image while decreasing the backlight brightness simultaneously. The goal of this technique is to provide equivalent end-user image quality at a decreased backlight power level.

- The original (input) image produced by the operating system or application is analyzed by the Intel DPST subsystem. An interrupt to Intel® DPST software is generated whenever a meaningful change in the image attributes is detected. (A meaningful change is when the Intel DPST software algorithm determines that enough brightness, contrast, or color change has occurred to the displaying images that the image enhancement and backlight control needs to be altered.)
- 2. Intel DPST subsystem applies an image-specific enhancement to increase image contrast, brightness, and other attributes.

3. A corresponding decrease to the backlight brightness is applied simultaneously to produce an image with similar user-perceived quality (such as brightness) as the original image. Intel DPST 5.0 has improved the software algorithms and has minor hardware changes to better handle backlight phase-in and ensures the documented and validated method to interrupt hardware phase-in.

27.3.6.3 Intel® Automatic Display Brightness

The Intel Automatic Display Brightness feature dynamically adjusts the backlight brightness based upon the current ambient light environment. This feature requires an additional sensor to be on the panel front. The sensor receives the changing ambient light conditions and sends the interrupts to the Intel Graphics driver. As per the change in Lux, (current ambient light illuminance), the new backlight setting can be adjusted through BLC. The converse applies for a brightly lit environment. Intel Automatic Display Brightness increases the back light setting.

27.3.6.4 Intel® Seamless Display Refresh Rate Switching Technology (Intel® SDRRS Technology)

When a Local Flat Panel (LFP) supports multiple refresh rates, the Intel[®] Display Refresh Rate Switching power conservation feature can be enabled. The higher refresh rate will be used when on plugged in power or when the end user has not selected/ enabled this feature. The graphics software will automatically switch to a lower refresh rate for maximum battery life when the design application is on battery power and when the user has selected/enabled this feature.

There are two distinct implementations of Intel SDRRS—static and seamless. The static Intel SDRRS method uses a mode change to assign the new refresh rate. The seamless Intel SDRRS method is able to accomplish the refresh rate assignment without a mode change and therefore does not experience some of the visual artifacts associated with the mode change (SetMode) method.

27.4 Memory Controller Power Management

The main memory is power managed during normal operation and in low-power ACPI Cx states.

27.4.1 Disabling Unused System Memory Outputs

Any system memory (SM) interface signal that goes to a memory module connector in which it is not connected to any actual memory devices (such as DIMM connector is unpopulated, or is single-sided) is tri-stated. The benefits of disabling unused SM signals are:

- Reduced power consumption.
- Reduced possible overshoot/undershoot signal quality issues seen by the processor I/O buffer receivers caused by reflections from potentially un-terminated transmission lines.

When a given rank is not populated, the corresponding chip select and CKE signals are not driven.

At reset, all rows must be assumed to be populated, until it can be proven that they are not populated. This is due to the fact that when CKE is tristated with an SO-DIMM present, the DIMM is not guaranteed to maintain data integrity.

SCKE tri-state should be enabled by BIOS where appropriate, since at reset all rows must be assumed to be populated.

27.4.2 DRAM Power Management and Initialization

The processor implements extensive support for power management on the SDRAM interface. There are four SDRAM operations associated with the Clock Enable (CKE) signals, which the SDRAM controller supports. The processor drives four CKE pins to perform these operations.

27.4.2.1 Initialization Role of CKE

During power-up, CKE is the only input to the SDRAM that is recognized (other than the DDR3 reset pin) once power is applied. It must be driven LOW by the DDR controller to make sure the SDRAM components float DQ and DQS during power- up.

CKE signals remain LOW (while any reset is active) until the BIOS writes to a configuration register. Using this method, CKE is guaranteed to remain inactive for much longer than the specified 200 micro-seconds after power and clocks to SDRAM devices are stable.

27.4.2.2 Conditional Self-Refresh

Intel Rapid Memory Power Management (Intel RMPM) conditionally places memory into self-refresh in the package C3 and C6 low-power states. RMPM functionality depends on graphics/display state (relevant only when internal graphics is being used), as well as memory traffic patterns generated by other connected I/O devices.

When entering the Suspend-to-RAM (STR) state, the processor core flushes pending cycles and then places all SDRAM ranks into self refresh. In STR, the CKE signals remain LOW so the SDRAM devices perform self-refresh.

The target behavior is to enter self-refresh for the package C3 and C6 states as long as there are no memory requests to service.

27.4.2.3 Dynamic Power Down Operation

Dynamic power-down of memory is employed during normal operation. Based on idle conditions, a given memory rank may be powered down. The IMC implements aggressive CKE control to dynamically put the DRAM devices in a power down state. The processor core controller can be configured to put the devices in active power down (CKE deassertion with open pages) or precharge power down (CKE deassertion with all

pages closed). Precharge power down provides greater power savings but has a bigger performance impact, since all pages will first be closed before putting the devices in power down mode.

If dynamic power-down is enabled, all ranks are powered up before doing a refresh cycle and all ranks are powered down at the end of refresh.

27.4.2.4 DRAM I/O Power Management

Unused signals should be disabled to save power and reduce electromagnetic interference. This includes all signals associated with an unused memory channel. Clocks can be controlled on a per SO-DIMM basis. Exceptions are made for per SO-DIMM control signals such as CS#, CKE, and ODT for unpopulated SO-DIMM slots.

The I/O buffer for an unused signal should be tri-stated (output driver disabled), the input receiver (differential sense-amp) should be disabled, and any DLL circuitry related ONLY to unused signals should be disabled. The input path must be gated to prevent spurious results due to noise on the unused signals (typically handled automatically when input receiver is disabled).

ξ

28 Thermal Management

The SoC's thermal management system helps in managing the overall thermal profile of the system to prevent overheating and system breakdown. The architecture implements various proven methods of maintaining maximum performance while remaining within the thermal spec. Throttling mechanisms are used to reduce power consumption when thermal limits of the device are exceeded and the system is notified of critical conditions via interrupts or thermal signalling pins. SoC thermal management differs from legacy implementations primarily by replacing dedicated thermal management hardware with firmware.

The thermal management features are:

- Five digital thermal sensors (DTS)
- Supports a hardware trip point and four programmable trip points based on the temperature indicated by thermal sensors.
- Supports different thermal throttling mechanisms.

28.1 Thermal Design Power (TDP)

The processor TDP is the maximum sustained power that should be used for design of the processor thermal solution. TDP represents an expected maximum sustained power from realistic applications. TDP may be exceeded for short periods of time or if running a "power virus" workload. The processor integrates multiple processing and graphics cores. This may result in differences in the power distribution across the die and must be considered when designing the thermal solution.

Intel Graphics Dynamic Frequency Technology has the ability of the processor graphics cores to opportunistically increase frequency and/or voltage above the guaranteed graphics frequency for the given part. It is invoked opportunistically and automatically as long as the processor is conforming to its temperature, power delivery, and current specification limits. When Intel Graphics Dynamic Frequency Technology is enabled:

- Applications are expected to run closer to TDP more often as the processor will attempt to maximize performance by taking advantage of available TDP headroom in the processor package.
- The processor may exceed the TDP for short durations to utilize any available thermal capacitance within the thermal solution. The duration and time of such operation can be limited by platform runtime configurable registers within the processor.
- Thermal solutions and platform cooling that are designed to less than thermal design guidance may experience thermal and performance issues since more applications will tend to run at or near TDP for significant periods of time.

28.2 Scenario Design Power (SDP)

Scenario Design Power (SDP) is a usage-based design specification, and provides additional guidance for power constrained platforms. SDP is defined at a specific scenario workload, temperature and frequency.

SDP in SoC can either be set statically or dynamically by changing the POWER_LIMIT (PL1), it is required that the system cooling capability sustainable such power level. While the SDP specification is characterized at Tj of 90 °C, the functional limit for the product reSoCmains at TjMAX. Customers may choose to have the processor invoke TCC Activation Throttling at 90 °C, but is not required. The processors that have SDP specified can still exceed SDP under certain workloads such as TDP workloads. TDP power dissipation is still possible with the intended usage models, and protection mechanisms to handle levels beyond cooling capabilities are recommended. Intel recommends using such thermal control mechanisms to manage situations where power may exceed the thermal design capability.

Note:

Although SDP is defined at 90 °C, the thermal throttling set point will default to 100 °C, and may be changed by the BIOS to 90 °C.

28.3 Thermal Sensors

SoC provides thermal sensors that use ring oscillator based DTS (Digital Thermal Sensor) to provide more accurate measure of system thermals.

The SoC instantiates multiple digital thermal sensors (one DTS for each processor core, one for each BIU-Bus Interface Unit, and two for non-core SoC) and sensor grouping configurations are provided to optionally select the maximum of all sensors for thermal readout and interrupt generation.

DTS output are adjusted for silicon variations. For a given temperature the output from DTS is always the same irrespective of silicon.

Table 122. Temperature Reading Based on DTS (If T_{J-MAX} =90°C)

DTS Counter Value	Temperature Reading
127	90°C
137	80°C
147	70°C
157	60°C
167	50°C
177	40°C
187	30°C
197	20°C
207	10°C

Note:

DTS encoding of 127 always represents T_{J-MAX} . If T_{J-MAX} is at 100°C instead of 90°C then the encoding 127 from DTS indicates 100°C, 137 indicates 90°C and so forth.

Thermal trip points are of two types:

- **Hard Trip**: The Catastrophic trip points generated by DTS's based on predefined temperature setting defined in fuses.
- **Programmable Trips**: four programmable trip settings (Hot, Aux2, Aux1, Aux0) that can be set by firmware/software. Default value for Hot Trip is from Fuses.

28.4 Hardware Trips

28.4.1 Catastrophic Trip (THERMTRIP)

Catastrophic trip is generated by DTS whenever the ambient temperature around it reaches (or extends) beyond the max value (indicated by a fuse). Catastrophic trip will not trip unless enabled (DTS are enabled only after HFPLL is locked). Within each DTS Catastrophic trips are flopped to prevent any glitches on Catastrophic signals from affecting the SoC behavior. Catastrophic trips are reset, once set, during power cycles.

Catastrophic trip signals from all DTS in the SoC are combined to generate THERMTRIP function which will in turn shut off all the PLL's and power rails to prevent SoC breakdown. To prevent glitches from triggering shutdown events, Catastrophic trip's from DTS's are registered before being sent out.

28.5 SoC Programmable Trips

Programmable trips can be programmed to cause different actions when triggered to reduce temperature of the die.

28.5.1 Aux3 Trip

By default, the Aux 3 (Hot Trip) point is set by fuses but the software/firmware has an option to set these to a different value.

This trip point is enabled by firmware to monitor and control the system temperature while the rest of the system is being set up.

28.5.2 Aux2, Aux1, Aux0 Trip

These are fully programmable trip points for general hardware protection mechanisms. The programmable trips are only active after software/firmware enables the trip.

Note:

Unlike Aux3, the Aux[2:0] trip registers are defaulted to zero. To prevent spurious results, software/firmware should program the trip values prior to enabling the trip point.

28.6 Platform Trips

28.6.1 **PROCHOT#**

The platform components use the signal PROCHOT# to indicate thermal events to SoC.

The processor core HOT trip as well as the processor AUX 3 trip are individually sent to firmware, which internally combines them and drives the appropriate PROCHOT back. Assertion of the PROCHOT# input will trigger Thermal Monitor 1 or Thermal Monitor 2 throttling mechanisms if they are enabled.

28.7 Thermal Throttling Mechanisms

Thermal throttling mechanisms are implemented to try to reduce temperature by reducing power consumption in response to a HOT condition. Actions taken as a result of Thermal Trip indication can be as simple as throttling bandwidth and frequency to as drastic as shutting down the PLL's and the entire system. Actions are primarily taken in to prevent system breakdown and are dependent on the severity of the trips.

28.8 Thermal Status

The firmware captures Thermal Trip events (other than THERMTRIP) in status registers to trigger thermal actions. Associated with each event is a set of programmable actions.

§

29 Electrical Specifications

This section is categorized into the following sections:

- "Absolute Maximum and Minimum Specifications"
- "Thermal Specifications"
- "Storage Conditions"
- "Voltage and Current Specifications"
- "Crystal Specifications"
- "DC Specifications"

29.1 Absolute Maximum and Minimum Specifications

The absolute maximum and minimum specifications are used to specify conditions allowable outside of the functional limits of the SoC, but with possible reduced life expectancy once returned to function limits.

At conditions exceeding absolute specifications, neither functionality nor long term reliability can be expected. Parts may not function at all once returned to functional limits.

Although the processor contains protective circuitry to resist damage from Electrostatic discharge (ESD), precautions should always be taken to avoid high static voltages or electric fields.

29.2 Thermal Specifications

These specifications define the operating thermal limits of the SoC. Thermal solutions not designed to provide the following level of thermal capability may affect the long-term reliability of the processor and system, but more likely result in performance throttling to ensure silicon junction temperatures within spec.

This section specifies the thermal specifications for all SKUs. Some definitions are needed, however. "Tj Max" defines the maximum operating silicon junction temperature. Unless otherwise specified, all specifications in this document assume Tj Max as the worse case junction temperature. This is the temperature needed to ensure TDP specifications when running at guaranteed CPU and graphics frequencies. "TDP" defines the thermal dissipated power for a worse case estimated real world thermal scenario. "SDP", or scenario dissipated power, defines the thermal dissipated power under a lighter workload specific to a user scenario and at a lower thermal junction temperature than Tj Max.

Note:

Turbo frequencies are opportunistically selected when thermal headroom exists. Automatic throttling along with a proper thermal solution ensure Tj Max will not be exceeded.

Table 123. SoC Thermal Specifications

SKU	T _j Max	SDP
Z3770	90 °C	2.0W @ 70 °C
Z3740	90 °C	2.0W @ 70 °C
Z3770D	90 °C	2.2W @ 70 °C
Z3740D	90 °C	2.2W @ 70 °C
Z3770	90 °C	2.0W @ 70 °C
Z3740	90 °C	2.0W @ 70 °C
Z3770D	90 °C	2.2W @ 70 °C
Z3740D	90 °C	2.2W @ 70 °C
Z3680	90 °C	2.0W @ 70 °C
Z3680D	90 °C	2.2W @ 70 °C
Z3745	105 °C	2.0W @ 70 °C
Z3745D	105 °C	2.2W @ 70 °C
Z3795	105 °C	2.0W @ 70 °C
Z3775	105 °C	2.0W @ 70 °C
Z3775D	105 °C	2.2W @ 70 °C
Z3735D ²	105 °C	2.2W @ 70 °C
Z3735E ²	105 °C	2.2W @ 70 °C
Z3735F ³	105 °C	2.2W @ 70 °C
Z3735G ³	105 °C	2.2W @ 70 °C

29.3 Storage Conditions

This section specifies absolute maximum and minimum storage temperature and humidity limits for given time durations. Failure to adhere to the specified limits could result in physical damage to the component. If this is suspected, Intel recommends a visual inspection to determine possible physical damage to the silicon or surface components.

Table 124. Storage Conditions Prior to Board Attach

Symbol	Parameter	Min	Max
Tabsolute storage	Device storage temperature when exceeded for any length of time.	-25 °C	125 °C
Tshort term storage	The ambient storage temperature and time for up to 72 hours.	-25 °C	85 °C
Tsustained storage	The ambient storage temperature and time for up to 30 months.	-5 °C	40 °C
RHsustained storage	The maximum device storage relative humidity for up to 30 months.		60% @ 24 °C

NOTES:

- Specified temperatures are not to exceed values based on data collected.
 Exceptions for surface mount re-flow are specified by the applicable JEDEC standard. Non-adherence may affect processor reliability.
- Component product device storage temperature qualification methods may follow JESD22-A119 (low temperature) and JESD22-A103 (high temperature) standards when applicable for volatile memory.
- Component stress testing is conducted in conformance with JESD22-A104.
- The JEDEC J-JSTD-020 moisture level rating and associated handling practices apply to all moisture sensitive devices removed from the moisture barrier bag.

29.3.1 Post Board-Attach

The storage condition limits for the component once attached to the application board are not specified. Intel does not conduct component-level certification assessments post board-attach given the multitude of attach methods, socket types, and board types used by customers.

Provided as general guidance only, board-level Intel-branded products are specified and certified to meet the following temperature and humidity limits:

- Non-Operating Temperature Limit: -40 °C to 70 °C
- Humidity: 50% to 90%, non-condensing with a maximum wet-bulb of 28 °C

29.4 Voltage and Current Specifications

The I/O buffer supply voltages are specified at the SoC package balls. The tolerances shown in Table 136 are inclusive of all noise from DC up to 20 MHz. The voltage rails should be measured with a bandwidth limited oscilloscope with a roll-off of 3 dB/decade above 20 MHz under all operating conditions. Table 144 indicates which supplies are connected directly to a voltage regulator or to a filtered voltage rail. For voltage rails that are connected to a filter, they should be measured at the input of the filter. If the recommended platform decoupling guidelines cannot be met, the system designer will have to make trade-offs between the voltage regulator out DC tolerance and the decoupling performances of the capacitor network to stay within the voltage tolerances listed below.

Note:

The SoC is a pre-launch product. Voltage and current specifications are subject to change.

Table 125. Intel® Atom™ Processor Z3600/Z3700 Series Type 4 SoC Power Rail DC Specs and Max Current

Platform Rail	Voltage Tolerances	Max Icc
V1P0A - UNCORE_V1P0_G3 - USB3_V1P0_G3	1.0 V DC: ±2% AC: ±3%	225 mA
V1P2A - USB_HSIC_V1P24_G3 (Can connect to V1P0A when USB HSIC isn't used)	1.20 V DC: ±3% AC: ±2%	35 mA
V1P8A - PCU_V1P8_G3 - PMC_V1P8_G3 - UNCORE_V1P8_G3 - USB_V1P8_G3 - USB_ULPI_V1P8_G3	1.8 V DC: ±3% AC: ±2%	70 mA
V3P3A - PCU_V3P3_G3	3.3 V DC: ±2% AC: ±3%	45 mA
V1P0SX - DRAM_V1P0_S0iX - DDI_V1P0_S0iX - UNCORE_V1P0_S0iX	1.0 V DC: ±2% AC: ±3%	900 mA
V1P24Sx (VSFR) - DRAM_V1P24_S0ix_F1 - UNCORE_V1P24_S0ix_F[6:1]	1.24 V DC: ±3% AC: ±2%	225 mA
V1P0S - UNCORE_V1P0_S4 - USB_V1P0_S4 - USB3DEV_V1P0_S4 - GPIO_V1P0_S4 - SVID_V1P0_S4	1.0 V DC: ±2% AC: ±3%	175 mA
V1P05S - CORE_V1P05_S4	1.05 V DC: ±2% AC: ±3%	600 mA
V1P24S - MIPI_V1P24_S4 (may be grounded if CSI & DSI not used) - ICLK_V1P24_S4_F[2:1]	1.24 V DC: ±2% AC: ±3%	45 mA
V1Pxxx	1.35 V DC: ±3% AC: ±2%	400 mA

Table 125. Intel® Atom™ Processor Z3600/Z3700 Series Type 4 SoC Power Rail DC Specs and Max Current

Platform Rail	Voltage Tolerances	Max Icc
V1P8S - LPE_V1P8_S4 - MIPI_V1P8_S4 - UNCORE_V1P8_S4 - SIO_V1P8_S4	1.8 V DC: ±3% AC: ±2%	10 mA
V1P8V3P3S (VSDIO,VLPC) - SD3_V1P8V3P3_S4 - LPC_V1P8V3P3_S4	1.8 V/3.3 V DC: ±2% AC: ±3%	5 mA
V3P3S - USB_V3P3_S0iX(?)	3.3 V DC: ±2% AC: ±3%	25 mA
VCC - CORE_VCC_S4	Refer Table 127	6.5 A
VNN - UNCORE_VNN_S4	Refer Table 127	5 A
VDD - DRAM_VDD_S4	1.24 V DC: ±2% AC: ±3%	600 mA
VRTC - RTC_VCC	G3: 2-3 V at battery Otherwise V3P3A (pre diode drop)	100 uA (6 uA Avg.) (see note)

Note: RTC_VCC average current draw (G3) is specified at 27°C under battery conditions.

Table 126. Intel® Atom™ Processor Z3700 Series Type 3 SoC Power Rail DC Specs and Max Current

Platform Rail	Voltage Tolerances	Max Icc
V1P0A - UNCORE_V1P0_G3	1.0 V DC: ±2% AC: ±6%	225 mA
V1P8A - PCU_V1P8_G3 - PMC_V1P8_G3 - UNCORE_V1P8_G3	1.8 V DC: ±2% AC: ±6%	70 mA
V3P3A - PCU_V3P3_G3	3.3 V DC: ±2% AC: ±6%	45 mA

Table 126. Intel® Atom™ Processor Z3700 Series Type 3 SoC Power Rail DC Specs and Max Current

Platform Rail	Voltage Tolerances	Max Icc
V1P0Sx - DRAM_V1P0_S0iX - DDI_V1P0_S0iX - UNCORE_V1P0_S0iX	1.0 V DC: ±2% AC: ±6%	900 mA
V1P24Sx (VSFR) - DRAM_V1P24_S0ix_F1 - UNCORE_V1P24_S0ix_F[1,4,5]	1.24 V DC: ±2.5% AC: ±6%	225 mA
V1P0S - UNCORE_V1P0_S4 - USB_V1P0_S4 - GPIO_V1P0_S4	1.0 V DC: ±2% AC: ±6%	175 mA
V1P05S - CORE_V1P05_S4	1.0 V DC: ±2% AC: ±6%	600 mA
V1P24S - ICLK_V1P24_S4_F[2:1]	1.24 V DC: ±2% AC: ±6%	45 mA
V1Pxxx	1.35 V DC: ±2% AC: ±6%	400 mA
V1P8S - LPE_V1P8_S4 - MIPI_V1P8_S4 - UNCORE_V1P8_S4	1.8 V DC: ±2% AC: ±6%	10 mA
V1P8V3P3S (VSDIO,VLPC) - SD3_V1P8V3P3_S4 - LPC_V1P8V3P3_S4	1.8 V/3.3 V DC: ±2% AC: ±6%	5 mA
V3P3S - USB_V3P3_S0iX	3.3 V DC: ±2% AC: ±6%	25 mA
VCC - CORE_VCC_S0iX	Refer Table 127	3 A

Table 126. Intel® Atom™ Processor Z3700 Series Type 3 SoC Power Rail DC Specs and Max Current

Platform Rail	Voltage Tolerances	Max Icc
VNN - UNCORE_VNN_S4	Refer Table 127	5 A
VDD - DRAM_VDD_S4	1.24 V DC: ±2% AC: ±6%	600 mA
VRTC - RTC_VCC	G3: 2-3 V at battery Otherwise V3P3A (pre diode drop)	100 uA (6 uA Avg.)

29.4.1 VCC and VNN Voltage Specifications

Table 127 and Table 136 list the DC specifications for the SoC power rails. They are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. Care should be taken to read all notes associated with each parameter.

Table 127. VCC and VNN DC Voltage Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Note
CORE_VCC VID	Core VID Target Range	0.40		1.14	V	
CORE_VCC_S0iX	V _{CC} for SoC Core	Refer VCC VID			V	2, 3
UNCORE_VNN VID	Uncore VID Target Range	0.50		1.05	V	
UNCORE_VNN_S4	V _{NN} for SoC Uncore	Refer VNN VID			V	2, 3
CORE_VCC/ UNCORE_VNN V _{BOOT}	Default target V_{CC}/V_{NN} voltage for initial power up.		1.0 or 1.1		V	4
VCC/VNN Tolerance	Tolerance of VCC/VNN voltage at VID target.	-5		5	%	

NOTES:

- Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date.
- Each SoC is programmed with voltage identification value (VID), which is set at manufacturing and
 cannot be altered. Individual VID values are calibrated during manufacturing such that two SoCs at the
 same frequency may have different settings within the VID range. Note this differs from the VID
 employed by the SoC during a power management event.
- 3. These are pre-silicon estimates and are subject to change.
- 4. Refer the VR12/IMVP7 Pulse Width Modulation specification for additional details. Either value is ok.

29.4.2 Voltage Identification (VID)

The VID specifications for the SoC CORE_VCC_S0iX and UNCORE_VNN_S4 are defined by the IMVP7 Pulse Width Modulation (PWM) Specification. Table 128 specifies the voltage level corresponding to the eight bit VID value transmitted over serial VID

(SVID) interface per IMVP7 specification. A '1' in this table refers to a high voltage level and a '0' refers to a low voltage level. If the voltage regulation circuit cannot supply the voltage that is requested, the voltage regulator must disable itself. The SVID signals are CMOS push/pull drivers. Refer to Table 153 for the DC specifications for these signals. The VID codes will change due to performance, temperature and/or current load changes in order to minimize the power of the part. A voltage range is provided in Table 127. The specifications are set so that one voltage regulator can operate with all supported frequencies.

Individual SoC VID values may be set during manufacturing so that two devices at the same core frequency may have different default VID settings. This is shown in the VID range values in Table 127. The SoC provides the ability to operate while transitioning to an adjacent VID and its associated voltage. This will represent a DC shift in the loadline.

Note:

Table below lists all voltages possible per IMVP7 specification. Not all voltages are valid on actual SKUs.

Table 128. IMVP7.0 Voltage Identification Reference (Sheet 1 of 8)

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Hex bit 1	Hex bit 0	V _{CC} (V)
0	0	0	0	0	0	0	0	0	0	0.00000
0	0	0	0	0	0	0	1	0	1	0.25000
0	0	0	0	0	0	1	0	0	2	0.25500
0	0	0	0	0	0	1	1	0	3	0.26000
0	0	0	0	0	1	0	0	0	4	0.26500
0	0	0	0	0	1	0	1	0	5	0.27000
0	0	0	0	0	1	1	0	0	6	0.27500
0	0	0	0	0	1	1	1	0	7	0.28000
0	0	0	0	1	0	0	0	0	8	0.28500
0	0	0	0	1	0	0	1	0	9	0.29000
0	0	0	0	1	0	1	0	0	Α	0.29500
0	0	0	0	1	0	1	1	0	В	0.30000
0	0	0	0	1	1	0	0	0	С	0.30500
0	0	0	0	1	1	0	1	0	D	0.31000
0	0	0	0	1	1	1	0	0	Е	0.31500
0	0	0	0	1	1	1	1	0	F	0.32000
0	0	0	1	0	0	0	0	1	0	0.32500
0	0	0	1	0	0	0	1	1	1	0.33000
0	0	0	1	0	0	1	0	1	2	0.33500
0	0	0	1	0	0	1	1	1	3	0.34000
0	0	0	1	0	1	0	0	1	4	0.34500

Table 128. IMVP7.0 Voltage Identification Reference (Sheet 2 of 8)

THAL.	.5 4010	age Iu		ition Re	. er enc		CC 2 01	_	1	
VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Hex bit 1	Hex bit 0	V _{CC} (V)
0	0	0	1	0	1	0	1	1	5	0.35000
0	0	0	1	0	1	1	0	1	6	0.35500
0	0	0	1	0	1	1	1	1	7	0.36000
0	0	0	1	1	0	0	0	1	8	0.36500
0	0	0	1	1	0	0	1	1	9	0.37000
0	0	0	1	1	0	1	0	1	Α	0.37500
0	0	0	1	1	0	1	1	1	В	0.38000
0	0	0	1	1	1	0	0	1	С	0.38500
0	0	0	1	1	1	0	1	1	D	0.39000
0	0	0	1	1	1	1	0	1	Е	0.39500
0	0	0	1	1	1	1	1	1	F	0.40000
0	0	1	0	0	0	0	0	2	0	0.40500
0	0	1	0	0	0	0	1	2	1	0.41000
0	0	1	0	0	0	1	0	2	2	0.41500
0	0	1	0	0	0	1	1	2	3	0.42000
0	0	1	0	0	1	0	0	2	4	0.42500
0	0	1	0	0	1	0	1	2	5	0.43000
0	0	1	0	0	1	1	0	2	6	0.43500
0	0	1	0	0	1	1	1	2	7	0.44000
0	0	1	0	1	0	0	0	2	8	0.44500
0	0	1	0	1	0	0	1	2	9	0.45000
0	0	1	0	1	0	1	0	2	Α	0.45500
0	0	1	0	1	0	1	1	2	В	0.46000
0	0	1	0	1	1	0	0	2	С	0.46500
0	0	1	0	1	1	0	1	2	D	0.47000
0	0	1	0	1	1	1	0	2	Е	0.47500
0	0	1	0	1	1	1	1	2	F	0.48000
0	0	1	1	0	0	0	0	3	0	0.48500
0	0	1	1	0	0	0	1	3	1	0.49000
0	0	1	1	0	0	1	0	3	2	0.49500
0	0	1	1	0	0	1	1	3	3	0.50000
0	0	1	1	0	1	0	0	3	4	0.50500
0	0	1	1	0	1	0	1	3	5	0.51000
0	0	1	1	0	1	1	0	3	6	0.51500
0	0	1	1	0	1	1	1	3	7	0.52000
0	0	1	1	1	0	0	0	3	8	0.52500

Table 128. IMVP7.0 Voltage Identification Reference (Sheet 3 of 8)

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Hex bit 1	Hex bit 0	V _{CC} (V)
0	0	1	1	1	0	0	1	3	9	0.53000
0	0	1	1	1	0	1	0	3	Α	0.53500
0	0	1	1	1	0	1	1	3	В	0.54000
0	0	1	1	1	1	0	0	3	С	0.54500
0	0	1	1	1	1	0	1	3	D	0.55000
0	0	1	1	1	1	1	0	3	Е	0.55500
0	0	1	1	1	1	1	1	3	F	0.56000
0	1	0	0	0	0	0	0	4	0	0.56500
0	1	0	0	0	0	0	1	4	1	0.57000
0	1	0	0	0	0	1	0	4	2	0.57500
0	1	0	0	0	0	1	1	4	3	0.58000
0	1	0	0	0	1	0	0	4	4	0.58500
0	1	0	0	0	1	0	1	4	5	0.59000
0	1	0	0	0	1	1	0	4	6	0.59500
0	1	0	0	0	1	1	1	4	7	0.60000
0	1	0	0	1	0	0	0	4	8	0.60500
0	1	0	0	1	0	0	1	4	9	0.61000
0	1	0	0	1	0	1	0	4	Α	0.61500
0	1	0	0	1	0	1	1	4	В	0.62000
0	1	0	0	1	1	0	0	4	С	0.62500
0	1	0	0	1	1	0	1	4	D	0.63000
0	1	0	0	1	1	1	0	4	Е	0.63500
0	1	0	0	1	1	1	1	4	F	0.64000
0	1	0	1	0	0	0	0	5	0	0.64500
0	1	0	1	0	0	0	1	5	1	0.65000
0	1	0	1	0	0	1	0	5	2	0.65500
0	1	0	1	0	0	1	1	5	3	0.66000
0	1	0	1	0	1	0	0	5	4	0.66500
0	1	0	1	0	1	0	1	5	5	0.67000
0	1	0	1	0	1	1	0	5	6	0.67500
0	1	0	1	0	1	1	1	5	7	0.68000
0	1	0	1	1	0	0	0	5	8	0.68500
0	1	0	1	1	0	0	1	5	9	0.69000
0	1	0	1	1	0	1	0	5	Α	0.69500
0	1	0	1	1	0	1	1	5	В	0.70000
0	1	0	1	1	1	0	0	5	С	0.70500

Table 128. IMVP7.0 Voltage Identification Reference (Sheet 4 of 8)

. IMVP7.0 Voltage Identification Reference (Sheet 4 of 8)										
VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Hex bit 1	Hex bit 0	V _{CC} (V)
0	1	0	1	1	1	0	1	5	D	0.71000
0	1	0	1	1	1	1	0	5	Е	0.71500
0	1	0	1	1	1	1	1	5	F	0.72000
0	1	1	0	0	0	0	0	6	0	0.72500
0	1	1	0	0	0	0	1	6	1	0.73000
0	1	1	0	0	0	1	0	6	2	0.73500
0	1	1	0	0	0	1	1	6	3	0.74000
0	1	1	0	0	1	0	0	6	4	0.74500
0	1	1	0	0	1	0	1	6	5	0.75000
0	1	1	0	0	1	1	0	6	6	0.75500
0	1	1	0	0	1	1	1	6	7	0.76000
0	1	1	0	1	0	0	0	6	8	0.76500
0	1	1	0	1	0	0	1	6	9	0.77000
0	1	1	0	1	0	1	0	6	Α	0.77500
0	1	1	0	1	0	1	1	6	В	0.78000
0	1	1	0	1	1	0	0	6	С	0.78500
0	1	1	0	1	1	0	1	6	D	0.79000
0	1	1	0	1	1	1	0	6	Е	0.79500
0	1	1	0	1	1	1	1	6	F	0.80000
0	1	1	1	0	0	0	0	7	0	0.80500
0	1	1	1	0	0	0	1	7	1	0.81000
0	1	1	1	0	0	1	0	7	2	0.81500
0	1	1	1	0	0	1	1	7	3	0.82000
0	1	1	1	0	1	0	0	7	4	0.82500
0	1	1	1	0	1	0	1	7	5	0.83000
0	1	1	1	0	1	1	0	7	6	0.83500
0	1	1	1	0	1	1	1	7	7	0.84000
0	1	1	1	1	0	0	0	7	8	0.84500
0	1	1	1	1	0	0	1	7	9	0.85000
0	1	1	1	1	0	1	0	7	Α	0.85500
0	1	1	1	1	0	1	1	7	В	0.86000
0	1	1	1	1	1	0	0	7	С	0.86500
0	1	1	1	1	1	0	1	7	D	0.87000
0	1	1	1	1	1	1	0	7	E	0.87500
0	1	1	1	1	1	1	1	7	F	0.88000
1	0	0	1	0	0	0	0	8	0	0.88500

Table 128. IMVP7.0 Voltage Identification Reference (Sheet 5 of 8)

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Hex bit 1	Hex bit 0	V _{CC} (V)
1	0	0	1	0	0	0	1	8	1	0.89000
1	0	0	1	0	0	1	0	8	2	0.89500
1	0	0	0	0	0	1	1	8	3	0.90000
1	0	0	0	0	1	0	0	8	4	0.90500
1	0	0	0	0	1	0	1	8	5	0.91000
1	0	0	0	0	1	1	0	8	6	0.91500
1	0	0	0	0	1	1	1	8	7	0.92000
1	0	0	0	1	0	0	0	8	8	0.92500
1	0	0	0	1	0	0	1	8	9	0.93000
1	0	0	0	1	0	1	0	8	Α	0.93500
1	0	0	0	1	0	1	1	8	В	0.94000
1	0	0	0	1	1	0	0	8	С	0.94500
1	0	0	0	1	1	0	1	8	D	0.95000
1	0	0	0	1	1	1	0	8	Е	0.95500
1	0	0	0	1	1	1	1	8	F	0.96000
1	0	0	0	0	0	0	0	9	0	0.96500
1	0	0	0	0	0	0	1	9	1	0.97000
1	0	0	0	0	0	1	0	9	2	0.97500
1	0	0	1	0	0	1	1	9	3	0.98000
1	0	0	1	0	1	0	0	9	4	0.98500
1	0	0	1	0	1	0	1	9	5	0.99000
1	0	0	1	0	1	1	0	9	6	0.99500
1	0	0	1	0	1	1	1	9	7	1.00000
1	0	0	1	1	0	0	0	9	8	1.00500
1	0	0	1	1	0	0	1	9	9	1.01000
1	0	0	1	1	0	1	0	9	Α	1.01500
1	0	0	1	1	0	1	1	9	В	1.02000
1	0	0	1	1	1	0	0	9	С	1.02500
1	0	0	1	1	1	0	1	9	D	1.03000
1	0	0	1	1	1	1	0	9	Е	1.03500
1	0	0	1	1	1	1	1	9	F	1.04000
1	0	1	1	0	0	0	0	Α	0	1.04500
1	0	1	1	0	0	0	1	Α	1	1.05000
1	0	1	1	0	0	1	0	Α	2	1.05500
1	0	1	0	0	0	1	1	Α	3	1.06000
1	0	1	0	0	1	0	0	Α	4	1.06500

Table 128. IMVP7.0 Voltage Identification Reference (Sheet 6 of 8)

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Hex bit 1	Hex bit 0	V _{CC} (V)
1	0	1	0	0	1	0	1	Α	5	1.07000
1	0	1	0	0	1	1	0	Α	6	1.07500
1	0	1	0	0	1	1	1	Α	7	1.08000
1	0	1	0	1	0	0	0	Α	8	1.08500
1	0	1	0	1	0	0	1	Α	9	1.09000
1	0	1	0	1	0	1	0	Α	Α	1.09500
1	0	1	0	1	0	1	1	Α	В	1.10000
1	0	1	0	1	1	0	0	Α	С	1.10500
1	0	1	0	1	1	0	1	Α	D	1.11000
1	0	1	0	1	1	1	0	Α	Е	1.11500
1	0	1	0	1	1	1	1	Α	F	1.12000
1	0	1	0	0	0	0	0	В	0	1.12500
1	0	1	0	0	0	0	1	В	1	1.13000
1	0	1	0	0	0	1	0	В	2	1.13500
1	0	1	1	0	0	1	1	В	3	1.14000
1	0	1	1	0	1	0	0	В	4	1.14500
1	0	1	1	0	1	0	1	В	5	1.15000
1	0	1	1	0	1	1	0	В	6	1.15500
1	0	1	1	0	1	1	1	В	7	1.16000
1	0	1	1	1	0	0	0	В	8	1.16500
1	0	1	1	1	0	0	1	В	9	1.17000
1	0	1	1	1	0	1	0	В	Α	1.17500
1	0	1	1	1	0	1	1	В	В	1.18000
1	0	1	1	1	1	0	0	В	С	1.18500
1	0	1	1	1	1	0	1	В	D	1.19000
1	0	1	1	1	1	1	0	В	Е	1.19500
1	0	1	1	1	1	1	1	В	F	1.20000
1	1	0	0	0	0	0	0	С	0	1.20500
1	1	0	0	0	0	0	1	С	1	1.21000
1	1	0	0	0	0	1	0	С	2	1.21500
1	1	0	0	0	0	1	1	С	3	1.22000
1	1	0	0	0	1	0	0	С	4	1.22500
1	1	0	0	0	1	0	1	С	5	1.23000
1	1	0	0	0	1	1	0	С	6	1.23500
1	1	0	0	0	1	1	1	С	7	1.24000
1	1	0	0	1	1	0	0	С	8	1.24500

Table 128. IMVP7.0 Voltage Identification Reference (Sheet 7 of 8)

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Hex bit 1	Hex bit 0	V _{CC} (V)
1	1	0	0	1	0	0	1	С	9	1.25000
1	1	0	0	1	0	1	0	С	Α	1.25500
1	1	0	0	1	0	1	1	С	В	1.26000
1	1	0	0	1	0	0	0	С	С	1.26500
1	1	0	0	1	1	0	1	С	D	1.27000
1	1	0	0	1	1	1	0	С	Е	1.27500
1	1	0	0	1	1	1	1	С	F	1.28000
1	1	0	1	0	1	0	0	D	0	1.28500
1	1	0	1	0	1	0	1	D	1	1.29000
1	1	0	1	0	0	1	0	D	2	1.29500
1	1	0	1	0	0	1	1	D	3	1.30000
1	1	0	1	0	1	0	0	D	4	1.30500
1	1	0	1	0	1	0	1	D	5	1.31000
1	1	0	1	0	1	1	0	D	6	1.31500
1	1	0	1	0	1	1	1	D	7	1.32000
1	1	0	1	1	0	0	0	D	8	1.32500
1	1	0	1	1	0	0	1	D	9	1.33000
1	1	0	1	1	0	1	0	D	Α	1.33500
1	1	0	1	1	0	1	1	D	В	1.34000
1	1	0	1	1	1	0	0	D	С	1.34500
1	1	0	1	1	1	0	1	D	D	1.35000
1	1	0	1	1	1	1	0	D	E	1.35500
1	1	0	1	1	1	1	1	D	F	1.36000
1	1	1	0	0	0	0	0	Е	0	1.36500
1	1	1	0	0	0	0	1	E	1	1.37000
1	1	1	0	0	0	1	0	E	2	1.37500
1	1	1	0	0	0	1	1	E	3	1.38000
1	1	1	0	0	1	0	0	E	4	1.38500
1	1	1	0	0	1	0	1	E	5	1.39000
1	1	1	0	0	1	1	0	E	6	1.39500
1	1	1	0	0	1	1	1	E	7	1.40000
1	1	1	0	1	0	0	0	E	8	1.40500
1	1	1	0	1	0	0	1	E	9	1.41000
1	1	1	0	1	0	1	0	Е	Α	1.41500
1	1	1	0	1	0	1	1	Е	В	1.42000
1	1	1	0	1	1	0	0	Е	С	1.42500

Table 128. IMVP7.0 Voltage Identification Reference (Sheet 8 of 8)

VID7	VID6	VID5	VID4	VID3	VID2	VID1	VID0	Hex bit 1	Hex bit 0	V _{CC} (V)
1	1	1	0	1	1	0	1	Е	D	1.43000
1	1	1	0	1	1	1	0	E	E	1.43500
1	1	1	0	1	1	1	1	E	F	1.44000
1	1	1	1	0	0	0	0	F	0	1.44500
1	1	1	1	0	0	0	1	F	1	1.45000
1	1	1	1	0	0	1	0	F	2	1.45500
1	1	1	1	0	0	1	1	F	3	1.46000
1	1	1	1	0	1	0	0	F	4	1.46500
1	1	1	1	0	1	0	1	F	5	1.47000
1	1	1	1	0	1	1	0	F	6	1.47500
1	1	1	1	0	1	1	1	F	7	1.48000
1	1	1	1	1	0	0	0	F	8	1.48500
1	1	1	1	1	0	0	1	F	9	1.49000
1	1	1	1	1	0	1	0	F	Α	1.49500
1	1	1	1	1	0	1	1	F	В	1.50000
1	1	1	1	1	1	0	0	F	С	1.49500
1	1	1	1	1	1	0	1	F	D	1.50000
1	1	1	1	1	1	1	0	F	Е	1.49500
1	1	1	1	1	1	1	1	F	F	1.50000

29.5 Crystal Specifications

There are two crystal oscillators. One for RTC which maintains time and provides initial timing reference for power sequencing. The other is for the Integrated Clock, which covers clocking for the entire SoC.

Table 129. ILB RTC Crystal Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
F _{RTC}	Frequency	-	32.768	-	kHz	1
T _{PPM}	Crystal frequency tolerance (see notes)	-	-	+/-50	ppm	1
R _{ESR}	ESR	-	-	50	kOhm	1
C _{X1,2}	Capacitance of X1, X2 pins				pF	1

NOTES:

1. These are the specifications needed to select a crystal oscillator for the RTC circuit.

Crystal tolerance impacts RTC time. A 10 ppm crystal is recommended for 1.7 s tolerance per day, RTC circuit itself contributes addition 10 ppm for a total of 20 ppm in this example.

Table 130. Integrated Clock Crystal Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
F _{ICLK}	Frequency	-	25	-	MHz	1
T _{PPM}	Crystal frequency tolerance & stability	-	-	+/-30	ppm	1
P _{DRIVE}	Crystal drive load	-	-	100	uW	1
R _{ESR}	ESR	-	-	100	Ohm	1
C _{LOAD}	Crystal load capacitance		18		pF	
C _{SHUNT}	Crystal shunt capacitance	-	-	6	pF	1
C _{IN/OUT}	Capacitance of oscillator pins				pF	1

NOTE: These are the specifications needed to select a crystal oscillator for the Integrated Clock circuit. Crystal must be AT cut, fundamental, parallel resonance.

29.6 DC Specifications

Platform reference voltages are specified at DC only. V_{REF} measurements should be made with respect to the supply voltages specified in "Voltage and Current Specifications".

Note: The SoC is a pre-launch product. DC specifications are subject to change.

Refer the following DC Specifications in this section:

- "Display DC Specification"
- "MIPI-Camera Serial Interface (CSI) DC Specification"
- "SCC SDIO DC Specification"
- "SCC SD Card DC Specification"
- "SCC eMMC 4.41 DC Specification"
- "SCC eMMC 4.51 DC Specification"
- "JTAG (TAP) DC Specification"
- "DDR3L-RS Memory Controller DC Specification"
- "LPDDR3 Memory Controller DC Specification"
- "USB 2.0 Host DC Specification"
- "USB 3.0 DC Specification"
- "PCU iLB LPC DC Specification"
- "PCU SPI (Platform Control Unit) DC Specification"
- "PCU Power Management/Thermal (PMC) and iLB RTC DC Specification"
- "SVID DC Specification"

- "GPIO DC Specification"
- "SIO I²C DC Specification"
- "SIO UART DC Specification"
- "I²S (Audio) DC Specification"

Note: Care should be taken to read all notes associated with each parameter.

29.6.1 Display DC Specification

DC specifications for display interfaces:

- "Digital Display Interface (DDI) Signals DC Specification"
- "MIPI DSI DC Specification"

29.6.1.1 Digital Display Interface (DDI) Signals DC Specification

Table 131. DDI Main Transmitter DC specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{TX-DIFFp-p-} Level0	Differential Peak-to-peak Output Voltage Level 0	0.34	0.4	0.46	V	1
V _{TX-DIFFp-p-} Level1	Differential Peak-to-peak Output Voltage Level 1	0.51	0.6	0.68	V	1
V _{TX-DIFFp-p-} Level2	Differential Peak-to-peak Output Voltage Level 2	0.69	0.8	0.92	V	1
VT _{X-DIFFp-p-} Level3	Differential Peak-to-peak Output Voltage Level 3	0.85	1.2	1.38	V	1
V _{TX-PREEMP-}	No Pre-emphasis	0.0	0.0	0.0	dB	1
	3.5 dB Pre-emphasis	2.8	3.5	4.2	dB	1
	6.0 dB Pre-emphasis	4.8	6.0	7.2	dB	1
	9.5 dB Pre-emphasis	7.5	9.5	11.4	dB	1
V _{TX-DC-CM}	Tx DC Common Mode Voltage	0		2.0	V	1
RLTX-DIFF	Differential Return Loss at 0.675GHz at Tx Package pins	12			dB	4
	Differential Return Loss at 1.35 GHz at Tx Package pins	9			dB	4
C_{TX}	AC Coupling Capacitor	75		200	nF	5
Voff	Single Ended Standby (off), output voltage	-10		10	mV	6 @ AVcc

Table 131. DDI Main Transmitter DC specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
Vswing	Single Ended output swing voltage	400		600	mV	
V _{OH} (<=165 MHz)	Single Ended high level, output voltage	-10		10	mv	6 @ AVcc
V _{OH} (>165 MHz)	Single Ended high level, output voltage	-200		10	mV	6 @ AVcc
V _{OL} (<=165 MHz)	Single Ended low level, output voltage	-600		-400	mV	6 @ AVcc
V _{OL} (>165MH z)	Single Ended low level, output voltage	-700		-400	mV	6 @ AVcc

NOTES:

- For embedded connection, support of programmable voltage swing levels is optional. Total drive current of the transmitter when it is shorted to its ground.
- 3. 4.
- Common mode voltage is equal to Vbias_Tx voltage shown in Figure 40.

 Straight loss line between 0.675 GHz and 1.35 GHz.

 All DisplayPort Main Link lanes as well as AUX CH must be AC coupled. AC coupling capacitors must be 5. placed on the transmitter side. Placement of AC coupling capacitors on the receiver side is optional.
- AVcc = Analog Voltage level

Table 132. DDI AUX Channel DC Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{AUX-DIFFp-p}	AUX Peak-to-peak Voltage at a transmitting Device	0.29		1.38	V	1
V _{AUXTERM_R}	AUX CH termination DC resistance		100		Ω	
V _{AUX-DC-CM}	AUX DC Common Mode Voltage	0		2.0	V	2
V _{AUX-TURN-CM}	AUX turn around common mode voltage			0.3	V	3
I _{AUX_SHORT}	AUX Short Circuit Current Limit			90	mA	4
C _{AUX}	AC Coupling Capacitor	75		200	nF	5

NOTES:

- $\begin{array}{l} V_{AUX-DIFFp-p} = 2*|V_{AUXP} V_{AUXM}| \\ \text{Common mode voltage is equal to } V_{bias_T_X} \text{ (or } V_{bias_R_X}) \text{ voltage.} \\ \text{Steady state common mode voltage shift between transmit and receive modes of operation.} \end{array}$
- 4.
- Total drive current of the transmitter when it is shorted to its ground.

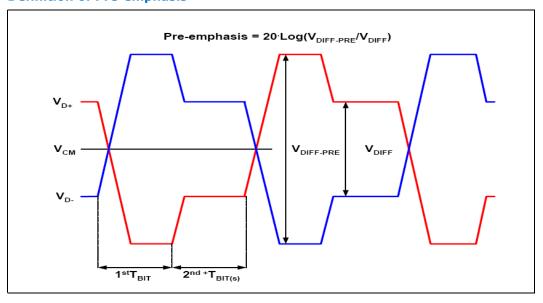

 All DisplayPort Main Link lanes as well as AUX CH must be AC coupled. AC coupling capacitors must be placed on the transmitter side. Placement of AC coupling capacitors on the receiver side is optional.

Figure 40. Definition of Differential Voltage and Differential Voltage Peak-to-Peak

Figure 41. Definition of Pre-emphasis

29.6.1.2 MIPI DSI DC Specification

Table 133. MIPI DSI DC Specification

Symbol	Parameter	Min.	Nom.	Max.	Unit	Notes
ILEAK	Pin Leakage current	-10	-	10	μΑ	
MIPI DSI H	S-TX Mode	•	1	<u>'</u>	•	ı
V _{CMTX}	HS transmit static common-mode voltage	150	200	250	mV	
V _{CMTX(1,0)}	V _{CMTX} mismatch when output is differential-1 or differential-0	-	-	5	mV	
V _{OD}	HS transmit differential voltage	140	200	270	mV	
ΔV _{OD}	V _{OD} mismatch when output is Differential-1 or Differential-0	-	-	10	mV	
V _{OHHS}	HS output high voltage	_	-	360	mV	
Z _{OS}	Single-ended output impedance	40	50	62.5	Ω	
ΔZ _{OS}	Single-ended output impedance mismatch	_	-	10	%	
MIPI DSI LI	P-TX Mode					
V _{OH}	Thevenin output high level	1.1	1.2	1.3	V	
V _{OL}	Thevenin output low level	-50	-	50	mV	
Z _{OLP}	Output impedance of LP transmitter	50	-	-	Ω	1
MIPI DSI LI	P-RX Mode					
V _{IH}	Logic 1 input voltage	880	-	-	mV	
V _{IL}	Logic 0 input voltage, not in ULP state	_	-	550	mV	
V _{HYST}	Input hysteresis	25	-	-	mV	
V _{IHCD}	Logic 1 Contention threshold	450	-	-	mV	
V _{ILCD}	Logic 0 Contention threshold	_	-	200	mV	

NOTE:

1. Deviates from MIPI D-PHY specification Rev 1.0, which has minimum ZOLP of 110 Ω .

29.6.2 MIPI-Camera Serial Interface (CSI) DC Specification

Table 134. MIPI HS-RX/MIPI LP-RX Minimum, Nominal, and Maximum Voltage Parameters

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
I _{LEAK}	Pin Leakage current		-	10	μΑ	
MIPI-CSI H	IS-RX Mode					
V _{CMRX(DC)}	Common-mode voltage HS receive mode	70	-	330	mV	
V _{IDTH}	Differential input high threshold	-	_	70	mV	
V _{IDTL}	Differential input low threshold	-70	-	-	mV	
V _{IHHS}	Single-ended input high voltage		-	460	mV	
V _{ILHS}	Single-ended input low voltage	-40	-	-	mV	
V _{TERM-EN}	Single-ended threshold for HS termination enable		-	450	mV	
Z _{ID}	Differential input impedance	80	100	125	Ω	
MIPI-CSI L	P-RX Mode					
V_{IH}	Logic 1 input voltage	880	_	_	mV	
V _{IL}	Logic 0 input voltage, not in ULP state	-	-	550	mV	
V _{IL-ULPS}	Logic 0 input voltage, ULP state	-	-	300	mV	
V _{HYST}	Input hysteresis	25	-	-	mV	

29.6.3 SCC - SDIO DC Specification

Table 135 provides the SDIO DC Specification, for all other DC Specifications not listed in Table 135, refer to Table 154, "GPIO 1.8V Core Well Signal Group DC Specification (GPIO_S0_SC[101:0]).

Table 135. SDIO DC Specification

Symbol	Parameter	Min.	Typ.	Max.	Unit	Notes
V _{OH}	Output High Voltage	1.4	-	-	V	$\begin{array}{c} \text{Measured at} \\ \text{I}_{\text{OH}} \text{ maximum.} \end{array}$
I _{OH/} I _{OL}	Current at VoL/Voh	-2	-	-	mA	

29.6.4 SCC - SD Card DC Specification

Table 136 provides the SD Card DC Specification, for all other DC Specifications not listed in Table 136, refer to Table 154, "GPIO 1.8V Core Well Signal Group DC Specification (GPIO_S0_SC[101:0]).

Table 136. SD Card DC Specification

Symbol	Parameter	Min.	Max.	Unit
V_{REF}	I/O Voltage	SD3_V1P		
V _{OH}	Output High Voltage	0.75*V _{REF}	0.75*V _{REF} –	
V _{OL}	Output Low Voltage	-	0.125*V _{REF}	V
V _{IH (3.3)}	Input High Voltage (3.3 V)	0.625*V _{REF}	-	V
V _{IL (3.3)}	Input Low Voltage (3.3 V)	-	0.25*V _{REF}	V
V _{PEAK (3.3)}	Peak Voltage on All lines	-0.3	V _{REF} +0.3	V
V _{IH (1.8)}	Input High Voltage (1.8 V)	1.28	-	V
V _{IL (1.8)}	Input Low Voltage (1.8 V)	-	0.58	V
V _{PEAK (1.8)}	Peak Voltage on All lines	-0.3	V _{REF} +0.3	V
$I_{OH/}I_{OL}$	Current at VoL/Voh	-45	-45 40	
V _{hysteresis}	Input Hysteresis	None		V
C_{LOAD}	Input Load Capacitance	4 9		pF

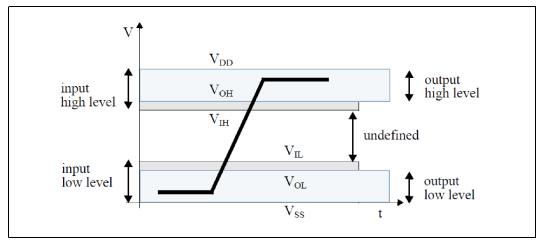

29.6.5 SCC - eMMC 4.41 DC Specification

Table 137. eMMC 4.41 Signal DC Electrical Specifications

Symbol	Parameter	Min	Max	Units	
V _{REF}	I/O Voltage	UNCORE_V1P8_S4			
V _{OH}	Output HIGH voltage	V _{REF} -0.45	-	V	
V _{OI}	Output LOW voltage	-	0.45	V	
V _{IH}	Input HIGH voltage	0.65*V _{REF}	-	V	
V _{IL}	Input LOW voltage		0.35*V _{REF}	V	
C _{PAD}	Input PAD Capacitance	2	5	pF	
I _{LI}	Input Leakage Current	-5	5	μΑ	
I _{LO}	Output Leakage Current	-5	5	μΑ	

Figure 42. eMMC DC Bus signal level

29.6.6 SCC - eMMC 4.51 DC Specification

Table 138. eMMC 4.51 Signal DC Electrical Specifications

Symbol	Parameter	Min Max		Units	
V _{REF}	I/O Voltage	UNCORE_V1P8_S4			
V _{OH}	Output HIGH voltage	V _{REF} - 0.45	-	V	
V _{OI}	Output LOW voltage	-	0.45	V	
V_{IH}	Input HIGH voltage	0.65 * V _{REF}	V _{REF} + 0.3	V	
V _{IL}	Input LOW voltage	-0.3	0.35 * V _{REF}	V	
C _L	Bus Signal Line capacitance	-	30	pF	
I_{LI}	Input Leakage Current	-2	2	μΑ	
I _{LO}	Output Leakage Current	-2	2	μΑ	

29.6.7 JTAG (TAP) DC Specification

Table 139. TAP Signal Group DC Specification (TAP_TCK, TAP_TRSRT#, TAP_TMS, TAP_TDI) (Sheet 1 of 2)

Symbol	Parameter	Min	Тур	Max	Units	Notes
V_{REF}	I/O Voltage	PMC_V1P8_G3				
V_{IH}	Input High Voltage	0.8*V _{REF}			V	1
V _{IL}	Input Low Voltage			0.4*V _{REF}	V	2
Z _{pu}	Pull up Impedance			60	Ω	3
Z _{pd}	Pull down Impedance			60	Ω	3

Table 139. TAP Signal Group DC Specification (TAP_TCK, TAP_TRSRT#, TAP_TMS, TAP_TDI) (Sheet 2 of 2)

Symbol	Parameter	Min	Тур	Max	Units	Notes
R _{wpu}	Weak Pull Impedance	1		4	kΩ	3
R _{wpd}	Weak Pull Down Impedance	1		4	kΩ	3
R _{wpu-40K}	Weak Pull Up Impedance 40K	20		70	kΩ	4
R _{wpd-40K}	Weak Pull Down Impedance 40K	20		70	kΩ	4

- V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value
- V_{IL} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low value. 2.
- Measured at PMC_V1P8_G3/2. 3.
- Rwpu_40k and Rwpd_40k are only used for TAP_TRST#

Table 140. TAP Signal Group DC Specification (TAP_TDO)

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{REF}	I/O Voltage		PMC_V1P8_			
V_{IH}	Input High Voltage	0.8*V _{REF}			V	1
V_{IL}	Input Low Voltage			0.5*V _{REF}	V	2
Z _{pd}	Pull down Impedance			30	Ω	3
R _{wpu}	Weak Pull Impedance	1		4	kΩ	3
R _{wpd}	Weak Pull Down Impedance	1		4	kΩ	3

NOTES:

- V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value
- V_{IL} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low 2. value.
- Measured at PMC_V1P8_G3/2.

Table 141. TAP Signal Group DC Specification (TAP_PRDY#, TAP_PREQ#)

Symbol	Parameter	Min	Тур	Max	Units	Notes
V_{REF}	I/O Voltage	PMC_V1P8_G3				
V_{IH}	Input High Voltage	0.64*V _{REF}			V	1
V _{IL}	Input Low Voltage			0.4*V _{REF}	V	2
Z _{pd}	Pull down Impedance			30	Ω	3
R _{wpu}	Weak Pull Impedance	1		4	kΩ	3

NOTES:

- V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value V_{IL} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low value.
- 2.

Measured at PMC_V1P8_G3/2.

29.6.8 **DDR3L-RS Memory Controller DC Specification**

Table 142. DDR3L-RS Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Units	Notes
V_{IL}	Input Low Voltage			DRAM_VREF - 200mV	V	1, 3
V_{IH}	Input High Voltage	DRAM_VREF + 200mV			V	2, 3
V _{OL}	Output Low Voltage		(DRAM_VDD_S4 / 2)* (RON / (RON+RVTT_TERM))			3,4
V _{OH}	Output High Voltage		DRAM_VDD_S4 - ((DRAM_VDD_S4 /2)* (RON/(RON+RVTT_TERM))		V	3,4
I _{IL}	Input Leakage Current			5	μА	For all DRAM Signals
R _{ON}	DDR3L-RS Clock Buffer strength		26		Ω	5
C _{IO}	DQ/DQS/DQS# DDR3L-RS IO Pin Capacitance		3.0		pF	

NOTES:

- $V_{\rm IL}$ is defined as the maximum voltage level at a DRAM input buffer that will be received as a logical low value. DRAM_VREF is normally DRAM_VDD_S4/2 1.
- $V_{
 m IH}$ is defined as the minimum voltage level at a DRAM input buffer that will be received as a logical high value. 2. DRAM_VREF is normally DRAM_VDD_S4/2
- V_{IH} and V_{OH} may experience excursions above DRAM_VDD_S4. However, input signal drivers must comply with the signal 3. quality specifications.

 RON is DRAM driver resistance whereas RTT_TERM is DRAM ODT resistance which is controlled by DRAM.
- DDR3L-1333 CLK buffer Ron is 260hm and SR target is 4V/ns; DQ-DQS buffer Ron is 30ohms and SR target is 4V/ns; CMD/CTL buffer Ron is 20ohms and SR target is 1.8V/ns.

29.6.9 **LPDDR3 Memory Controller DC Specification**

Table 143. LPDDR3 Signal Group DC Specifications (Sheet 1 of 2)

Symbol	Parameter	Min	Тур	Max	Uni ts	Not es
DRAM_VDD_S4	I/O Supply Voltage	1.14	1.24	1.26	V	
DRAM_VREF	Reference Voltage	0.49 * DRAM_VDD_S4	0.50 * DRAM_VDD _S4	0.51 * DRAM_VDD_S4		
V _{IL}	Input Low Voltage			DRAM_VREF - 200 mV	V	
V _{IH}	Input High Voltage	DRAM_VREF + 200 mV			V	
V _{OL}	Output Low Voltage	-	0.260	-	V	1,2

Table 143. LPDDR3 Signal Group DC Specifications (Sheet 2 of 2)

Symbol	Parameter	Min	Тур	Max	Uni ts	Not es
V _{OH}	Output High Voltage	-	0.960	-	V	1,2
I _{IL}	Input Leakage Current	-	5	-	μA	3,4
R _{ON}	Clock Buffer strength	26		40	Ω	
C _{IO}	IO Pin Capacitance		3.0		pF	

- Vol & Voh is determined with 40ohm buffer strength setting into a 60ohm to 0.5x V1p5_ddr test load. LPDDR3-1066 CLK buffer Ron is 35ohm and SR target is 2.5V/ns; DQ-DQS buffer Ron is 40ohms and SR target is 2V/ns; CMD/CTL buffer Ron is 30ohms and SR target is 1.5V/ns. Applies to the pin to VCC or VSS leakage current. Applies to the pin to pin leakage current.

29.6.10 USB 2.0 Host DC Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
Supply V	oltage:	l			1	l
VBUS	High-power Port	4.75		5.25	V	2
VBUS	Low-power Port					
Supply C	urrent:					
ICCPRT	High-power Hub Port (out)	500			mA	
ICCUPT	Low-power Hub Port (out)	100			mA	
ICCHPF	High-power Function (in)			500	mA	
ICCLPF	Low-power Function (in)			100	mA	
ICCINIT	Unconfigured Function/Hub (in)			100	mA	
ICCSH	Suspended High-power Device			2.5	mA	15
ICCSL	Suspended Low-power Device			500	μΑ	
Input Le	vels for Low-/full-speed:					
VIH	High (driven)	2.0			V	4
VIHZ	High (floating)	2.7		3.6	V	4
VIL	Low			0.8	V	4
VDI	Differential Input Sensitivity	0.2			V	(D+)-(D-) ;Figure; Note 4
VCM	Differential Common Mode Range	0.8		2.5	V	Includes VDI range; Figure; Note

-speed squelch detection shold (differential signal litude) speed disconnect detection shold (differential signal litude) -speed differential signal litude) -speed differential input aling levels -speed data signaling common e voltage range (guideline for iver) for Low-/full-speed: (Driven) out Signal Crossover age for High-speed:	100 525 -50 0.0 2.8 0.8 1.3		150 625 500 0.3 3.6	mV mV v v v	4,5 4,6
shold (differential signal litude) speed disconnect detection shold (differential signal litude) -speed differential input aling levels -speed data signaling common e voltage range (guideline for iver) for Low-/full-speed: (Driven) out Signal Crossover age for High-speed:	-50 -50 0.0 2.8 0.8		500 0.3 3.6	mV mV V	
shold (differential signal litude) -speed differential input aling levels -speed data signaling common e voltage range (guideline for iver) for Low-/full-speed: (Driven) out Signal Crossover age for High-speed:	-50 0.0 2.8 0.8		500 0.3 3.6	W V V	
aling levelsspeed data signaling common e voltage range (guideline for iver) for Low-/full-speed: (Driven) out Signal Crossover age for High-speed:	0.0 2.8 0.8		0.3	V V	
e voltage range (guideline for iver) for Low-/full-speed: (Driven) out Signal Crossover age for High-speed:	0.0 2.8 0.8		0.3	V V	
(Driven) out Signal Crossover age for High-speed:	2.8		3.6	V	
out Signal Crossover age for High-speed:	2.8		3.6	V	
out Signal Crossover age for High-speed:	0.8			V	4,6
for High-speed:			2.0		
for High-speed:	1.3		2.0	V	
					10
		•	<u> </u>	1	
-speed idle level	-10		10	mV	
-speed data signaling high	360		440	mV	
-speed data signaling low	-10		10	mV	
J level (differential voltage)	700		1100	mV	
K level (differential voltage)	-900		-500	mV	
pacitance:		•	<u> </u>	1	
nstream Facing Port Bypass acitance (per hub)	120			μF	
ream Facing Port Bypass acitance	1.0		10.0	μF	9
ance for Low-/full-speed:					
nstream Facing Port			150	pF	2
ream Facing Port (w/o cable)			100	pF	3
-			75	pF	
· -					
			1		
	nstream Facing Port ream Facing Port (w/o cable) sceiver edge rate control citance nce for High-speed:	nstream Facing Port ream Facing Port (w/o cable) sceiver edge rate control citance nce for High-speed:	nstream Facing Port ream Facing Port (w/o cable) sceiver edge rate control citance nce for High-speed:	nstream Facing Port 150 ream Facing Port (w/o cable) 100 sceiver edge rate control citance 75 nce for High-speed:	nstream Facing Port 150 pF ream Facing Port (w/o cable) 100 pF sceiver edge rate control 75 pF citance

Symbol	Parameter	Min	Тур	Max	Units	Notes			
RPU	Bus Pull-up Resistor on Upstream Facing Port	1.425		1.575	kΩ	1.5 kΩ ±5%			
RPD	Bus Pull-down Resistor on Downstream Facing Port	14.25		15.75	kΩ	1.5 kΩ ±5%			
ZINP	Input impedance exclusive of pull- up/pull-down (for low-/full speed)	300			kΩ				
VTERM	Termination voltage for upstream facing port pull-up (RPU)	3.0		3.6	V				
Terminat	Terminations in High-speed:								
VHSTER M	Termination voltage in high speed	-10		10	mV				

- 1. Measured at A plug.
- 2. Measured at A receptacle.
- 3. Measured at B receptacle.
- 4. Measured at A or B connector.
- 5. Measured with RL of 1.425 $k\Omega$ to 3.6 V.
- 6. Measured with RL of 14.25 $k\Omega$ to GND.
- 7. Timing difference between the differential data signals.
- 8. Measured at crossover point of differential data signals.
- 9. The maximum load specification is the maximum effective capacitive load allowed that meets the target VBUS drop of 330 mV.
- 10. Excluding the first transition from the Idle state.
- 11. The two transitions should be a (nominal) bit time apart.
- 12. For both transitions of differential signaling.
- 13. Must accept as valid EOP.
- 14. Single-ended capacitance of D+ or D- is the capacitance of D+/D- to all other conductors and, if present, shield in the cable. That is, to measure the single-ended capacitance of D+, short D-, VBUS, GND, and the shield line together and measure the capacitance of D+ to the other conductors.
- 15. For high power devices (non-hubs) when enabled for remote wakeup.

29.6.11 USB 3.0 DC Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
UI	Unit Interval	199.94		200.06	ps	1
V _{TX-DIFF-PP}	Differential peak-peak Tx voltage swing	0.9	1	1.05	V	
V _{TX-DIFF-PP-} LOW	Low-Power Differential peak-peak Tx voltage swing	0.4		1.2	V	2
V _{TX-DE-RATIO}	Tx De-Emphasis	3.45	3.5	3.65	dB	
R _{TX-DIFF-DC}	DC differential impedance	88		92	Ω	

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{TX-RCV-} DETECT	The amount of voltage change allowed during Receiver Detection			0.6	V	3
C _{AC-COUPLING}	AC Coupling Capacitor	75		200	nF	4
t _{CDR_SLEW_M}	Maximum slew rate			10	ms/s	

- The specified UI is equivalent to a tolerance of 300ppm for each device. Period does not account for SSC 1. induced variations.
- 2. There is no de-emphasis requirement in this mode. De-emphasis is implementation specific for this
- 3. Detect voltage transition should be an increase in voltage on the pin looking at the detect signal to avoid
- a high impedance requirement when an "off" receiver's input goes below output.

 All transmitters shall be AC coupled. The AC coupling is required either within the media or within the 4. transmitting component itself.

29.6.12 PCU - iLB - LPC DC Specification

Table 144. LPC Signal Group DC Specification (LPC_V1P8V3P3_S4 = 1.8V (ILB_LPC_AD][3:0], ILB_LPC_FRAME#, ILB_LPC_SERIRQ, ILB_LPC_CLKRUN#))

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{IH}	Input High Voltage	1.27	1.8	1.8 +0.1	V	
V _{IL}	Input Low Voltage	-0.1	0	0.58	V	
V _{OH}	Output High Voltage	0.9 x 1.8			V	
V _{OL}	Output Low Voltage			0.1 x 1.8	V	
I _{OH}	Output High Current		1.5		mA	
I _{OL}	Output Low Current		-0.5		mA	
I _{LEAK}	Input Leakage Current			30	μΑ	
C _{IN}	Input Capacitance	1		9	pF	

Table 145. LPC Signal Group DC Specification LPC_V1P8V3P3_S4 = 3.3V (ILB_LPC_AD[3:0], ILB_LPC_FRAME#, ILB_LPC_CLKRUN#) (Sheet 1 of 2)

Symbol	Parameter	Min	Тур	Max	Units	Notes
V_{IH}	Input High Voltage	0.5 x 3.3+ 0.7	3.3	3.3 +0.1	V	1
V _{IL}	Input Low Voltage	-0.1	0	0.5 x 3.3 - 0.7	V	2
V _{OH}	Output High Voltage	0.9 x 3.3			V	3
V _{OL}	Output Low Voltage			0.1 x 3.3	V	3
I _{OH}	Output High Current		1.5		mA	3

Table 145. LPC Signal Group DC Specification LPC_V1P8V3P3_S4 = 3.3V (ILB_LPC_AD[3:0], ILB_LPC_FRAME#, ILB_LPC_CLKRUN#) (Sheet 2 of 2)

Symbol	Parameter	Min	Тур	Max	Units	Notes
I _{OL}	Output Low Current		-0.5		mA	3
I _{LEAK}	Input Leakage Current			30	μΑ	
C _{IN}	Input Capacitance	1		9	pF	

NOTES:

- V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value, Applies to ILB_LPC_AD[3:0], ILB_LPC_CLKRUN#
- V_{II} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low value. Applies to ILB_LPC_AD[3:0], ILB_LPC_CLKRUN#
- V_{OH} is tested with Iout=500uA, V_{OL} is tested with Iout=1500uA Applies to ILB_LPC_AD[3:0],ILB_LPC_CLKRUN# and ILB_LPC_FRAME# 3.
- 4.
- ILB_LPC_SERIRQ is always a 1.8V I/O irrespective of the value of LPC_V1P8V3P3_S4.

PCU - SPI (Platform Control Unit) DC Specification 29.6.13

Table 146. SPI Signal Group DC Specification (PCU_SPI_MISO, PCU_SPI_CS[1:0]#, PCU_SPI_MOSI, PCU_SPI_CLK)

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{REF}	I/O Voltage		V	3		
V _{IH}	Input High Voltage	0.5 *V _{REF}		V _{REF} + 0.5	V	2
V _{IL}	Input Low Voltage	-0.5		0.3 * V _{REF}	V	2
V _{OH}	Output High Voltage	0.9 * V _{REF}		1.8V	V	1
V _{OL}	Output Low Voltage			0.1 * V _{REF}	V	1
I _{OH}	Output High Current			1.5	mA	1
I _{OL}	Output Low Current	-0.5			mA	1

NOTES:

- Applies to PCU_SPI_CS[1:0], PCU_SPI_CLK, PCU_SPI_MOSI 1.
- Applies to PCU_SPI_MISO and PCU_SPI_MOSI 2.
- The I/O buffer supply voltage is measured at the SoC package pins. The tolerances shown are inclusive of all noise from DC up to 20 MHz. In testing, the voltage rails should be measured with a bandwidth limited oscilloscope that has a rolloff of 3 dB/decade above 20 MHz.

PCU - Power Management/Thermal (PMC) and iLB RTC DC 29.6.14 **Specification**

Table 147. Power Management 1.8V Suspend Well Signal Group DC Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
V_{REF}	I/O Voltage		V			
V _{IH}	Input High Voltage	0.8*V _{REF}			V	1

Table 147. Power Management 1.8V Suspend Well Signal Group DC Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
V_{IL}	Input Low Voltage			0.5*V _{REF}	V	2
V _{OH}	Output High Voltage	0.9*V _{REF}		V_{REF}	V	1
V _{OL}	Output Low Voltage			0.1*V _{REF}	V	1

- 1. The data in this table apply to signals PMC_ACPRESENT, PMC_BATLOW#, PMC_PLTRST#, PMC_PWRBTN#, PMC_SLP_S4#, PMC_SUS_STAT#, PMC_SUSCLK[3:0], PMC_SUSPWRDNACK
- 2. V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value
- 3. V_{IL} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low value.

Table 148. PMC_RSTBTN# 1.8V Core Well Signal Group DC Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
VREF	I/O Voltage	UN	V			
V _{IH}	Input High Voltage	0.8* VREF			V	1
V_{IL}	Input Low Voltage			0.5* VREF	V	2

NOTES:

- 1. V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value
- 2. $V_{\rm IL}$ is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low value.

Table 149. Power Management & RTC Well Signal Group DC Specification (PMC_RSMRST#, PMC_CORE_PWROK, ILB_RTC_RST#)

Symbol	Parameter	Min	Тур	Max	Units	Notes
VREF	I/O Voltage	R				
V _{IH}	Input High Voltage	2.0	-	-	V	1
V_{IL}	Input Low Voltage	-	-	0.78	V	2

NOTES:

- 1. V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value
- 2. V_{IL} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low value.

Table 150. iLB RTC Well DC Specification (ILB_RTC_TEST#)

Symbol	Parameter	Min	Тур	Max	Units	Notes
V_{IH}	Input High Voltage	2.3	-	-	V	1
V _{IL}	Input Low Voltage	-	-	0.78	V	1

- 1. V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value
- 2. $V_{\rm IL}$ is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low value.

Table 151. ILB RTC Oscillator Optional DC Specification (ILB_RTC_X1)

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{IH}	Input High Voltage	0.65	0.8	1.2	V	1
V _{IL}	Input Low Voltage			0.25	V	1

NOTE:

 ILB_RTC_X1 DC specification is **only** used for applications with an active external clock source instead of a crystal. When a crystal is used (typical case) between ILB_RTC_X2 and ILB_RTC_X1, this spec is not used.

Table 152. PROCHOT# Signal Group DC Specification

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{REF}	I/O Voltage	CORE_V1P0_S4				
V _{IH}	Input High Voltage	0.8*V _{REF}		V_{REF}	V	1
V_{IL}	Input Low Voltage			0.4*V _{REF}	V	2
V _{OH}	Output High Voltage	0.9*V _{REF}		V_{REF}	V	
V _{OL}	Output Low Voltage			0.1*V _{REF}	V	

NOTES:

- 1. V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value
- 2. V_{1L} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical low value.

29.6.15 SVID DC Specification

Table 153. SVID Signal Group DC Specification (SVID_DATA, SVID_CLK, SVID_ALERT#)

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{REF}	I/O Voltage	SV	ID_V1P0			
V_{IH}	Input High Voltage	0.65*V _{REF}			V	1
V_{IL}	Input Low Voltage			0.44*V _{REF}	V	1
V _{OH}	Output High Voltage				V	1
V _{OL}	Output Low Voltage			0.1*V _{REF}	V	4
V _{HYS}	Hysteresis Voltage	0.05			V	
R _{ON}	BUffer on Resistance	10		20	Ω	2

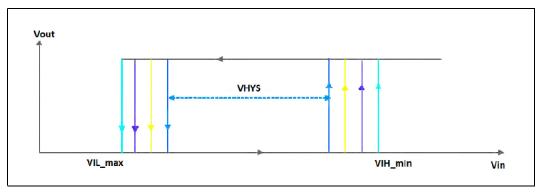


Table 153. SVID Signal Group DC Specification (SVID_DATA, SVID_CLK, SVID_ALERT#)

Symbol	Parameter	Min	Тур	Max	Units	Notes
I_{L}	Leakage Current	-100		100	μΑ	3
C _{PAD}	Pad Capacitance			4.0	pF	4
V _{PIN}	Pin Capacitance			5.0	pF	

- 1.
- 2.
- SVID_V1P0_S4 refers to instantaneous voltage VSS_SENSE
 Measured at 0.31 * SVID_V1P0_S4
 V_{IN} between 0V and SVID_V1P0_S4
 CPAD includes die capacitance only. No package parasitic included. 4.

Figure 43. VHYS

29.6.16 GPIO DC Specification

GPIO Buffer is used across various interfaces on the SoC such as, GPIOs, I²C, I2S, SPI, SDIO, SVID, UART, JTAG and ULPI.

Table 154. GPIO 1.8V Core Well Signal Group DC Specification (GPIO_S0_SC[101:0])

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{REF}	I/O Voltage	UN	CORE_V1P8	_S4		
V_{IH}	Input High Voltage	0.65*V _{REF}			V	
V_{IL}	Input Low Voltage			0.35 * V _{REF}	V	
V _{OH}	Output High Voltage	V _{REF} - 0.45			V	
V _{OL}	Output Low Voltage			0.45	V	
V _{Hys}	Input Hysteresis	0.1			V	
IL	Leakage Current			5	μΑ	
C _{LOAD}	Load Capacitance	2		75	pF	

Table 155. GPIO 1.8V Suspend Well Signal Group DC Specification (GPIO_S5[43:0])

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{REF}	I/O Voltage	P	MC_V1P8_C	3	V	
V _{IH}	Input High Voltage	0.65*V _{REF}			V	
V _{IL}	Input Low Voltage			0.35*V _{REF}	V	
V _{OH}	Output High Voltage	V _{REF} - 0.45			V	
V _{OL}	Output Low Voltage			0.45	V	
V _{Hys}	Input Hysteresis	0.1			V	
I_{L}	Leakage Current			5	μΑ	
C _{LOAD}	Load Capacitance	2		75	pF	

29.6.17 SIO - I²C DC Specification

Table 156. I²C Signal Electrical Specifications

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{REF}	I/O Voltage	SIO_V1P8_S4				
V _{IH}	Input High Voltage	0.7 * V _{REF}			V	
V_{IL}	Input Low Voltage			0.3 * V _{REF}	V	
V _{OL}	Output Low Voltage			0.2 * V _{REF}	V	
V _{Hys}	Input Hysteresis	0.1			V	
C_{PIN}	Pin Capacitance	2		5	pF	

29.6.18 SIO - UART DC Specification

Refer to GPIO Buffer (1.8V) DC Specification, mentioned Section 29.6.16, "GPIO DC Specification" on page 308

29.6.19 I²S (Audio) DC Specification

Refer to GPIO Buffer (1.8V) DC Specification, mentioned Section 29.6.16, "GPIO DC Specification" on page 308

§

30 Ballout and Package Information

30.1 Type 4 SoC

The SoC comes in a 17mm \times 17 mm Flip-Chip Ball Grid Array (FCBGA) package and consists of a silicon die mounted face down on an organic substrate populated with 1380 solder balls on the bottom side. Capacitors may be placed in the area surrounding the die. Because the die-side capacitors are electrically conductive, and only slightly shorter than the die height, care should be taken to avoid contacting the capacitors with electrically conductive materials. Doing so may short the capacitors and possibly damage the device or render it inactive.

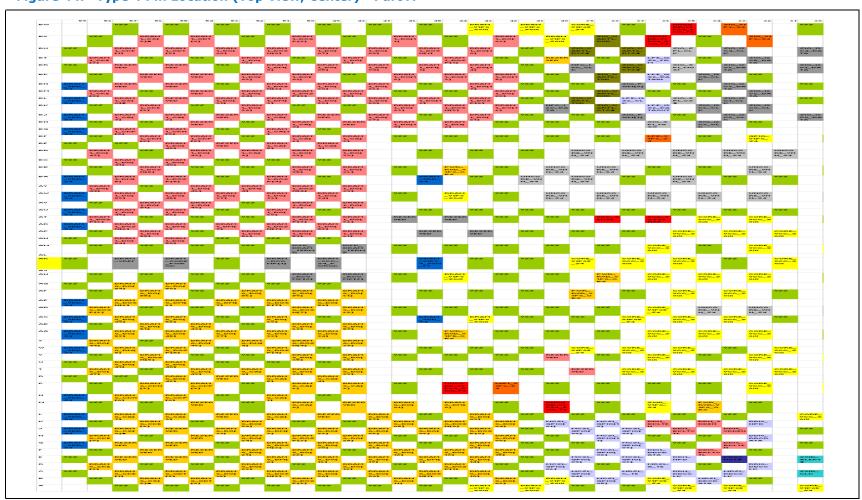
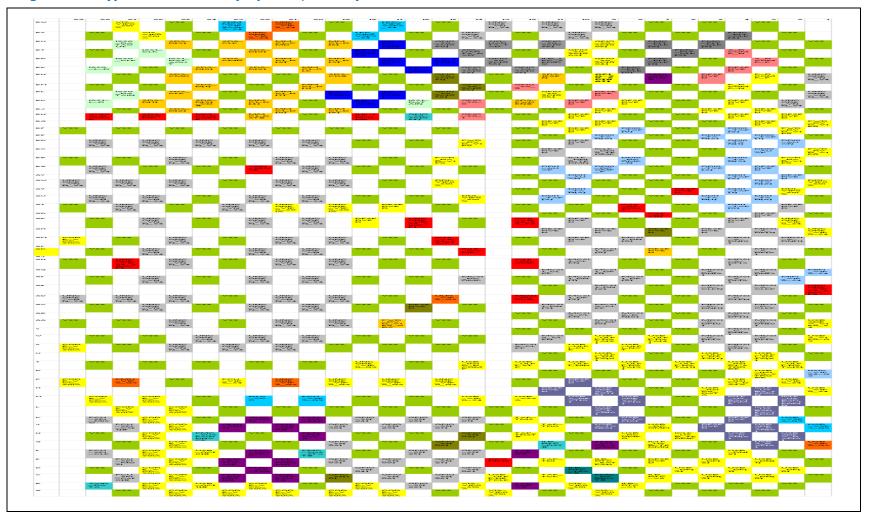
The use of an insulating material between the capacitors and any thermal solution should be considered to prevent capacitor shorting. An exclusion, or keep out zone, surrounds the die and capacitors, and identifies the contact area for the package. Care should be taken to avoid contact with the package inside this area.

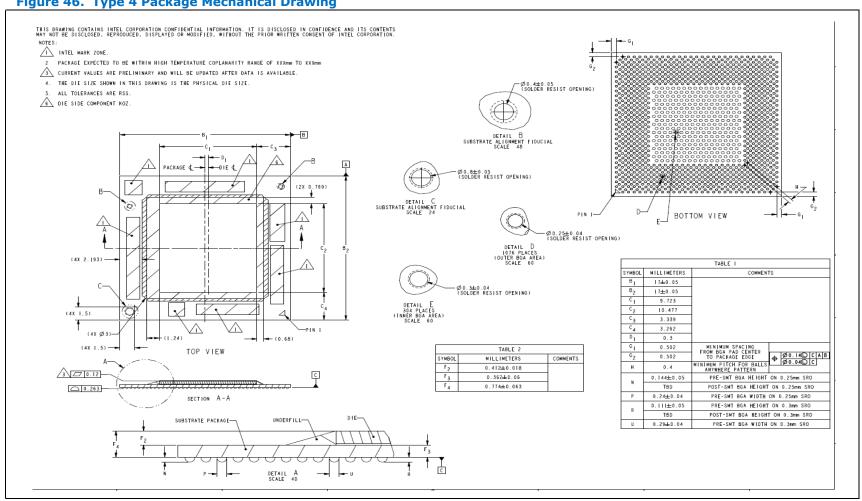
30.1.1 SoC Attributes

Attribute	SoC			
X-Y dimensions (mm)	17mm X 17mm			
CPU Core Process (nm)	22			
Pre - SMT Height (mm)	0.774			
Post - SMT Height (mm)	0.8			
Minimum BGA Ball Pitch (mm)	0.4			
Die Thickness (um)	370			
Total Pin Count	1380			
Package Type	FCBGA13			

30.1.2 Ballout

Figure 44. Type 4 Pin Location (Top View, Center) - Part A


Figure 45. Type 4 Pin Location (Top View, Center) - Part B

Package Diagrams 30.1.3

Figure 46. Type 4 Package Mechanical Drawing

30.2 Type 3 SoC

The SoC comes in a 17 mm \times 17 mm Flip-Chip Ball Grid Array (FCBGA) package and consists of a silicon die mounted face down on an organic substrate populated with 592 solder balls on the bottom side.

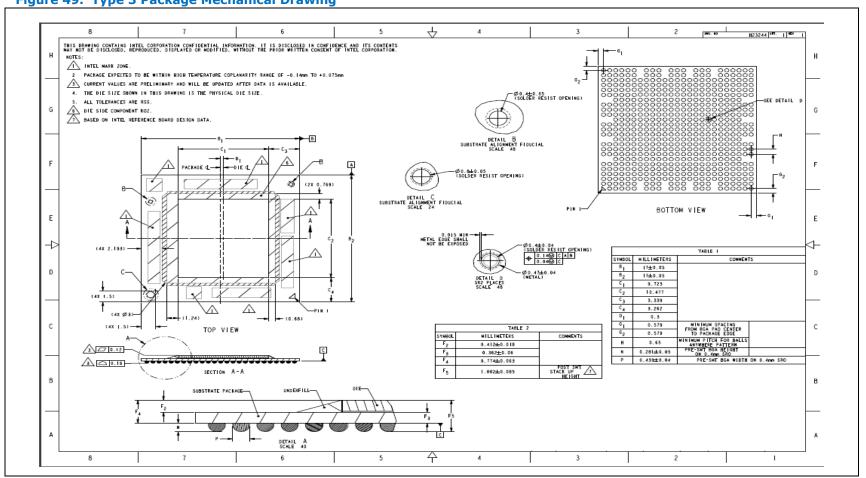
30.2.1 SoC Attributes

Attribute	SoC			
X-Y dimensions (mm)	17mm X 17mm			
SoC Core Process (nm)	22			
Pre - SMT Height (mm)	0.774			
Post - SMT Height (mm)	0.8			
Minimum BGA Ball Pitch (mm)	0.65			
Die Thickness (um)	370			
Total Pin Count	592			
Package Type	FCBGA UTC			

30.2.2 Ballout

Figure 47. Type 3 Pin Location (Top View, Center) - Part A

	25	24	23	22	21	20	19	18	17	16	15	14	13
E	PWR_RSVD_OB S	DRAM_V1P0_S4	DRAM0_DQ[35]	DRAM_RCOMP[2]	DRAM_RCOMP[0]	DRAM_RCOMP[1	152211	SIO_UART2_TXD	SIO_UART2_CTS #	SIO_I2C4_CLK		AUDIO_RCOMP	SIO_I2C1_DATA
D	VSS	DRAM0_DQ[32]	DRAM0_DQ[38]	DRAM0_DQ[51]	vss	DRAM_VREF	(1000)	SIO_UART2_RXD	vss	SIO_I2C4_DATA		SIO_I2C1_CLK	vss
С	DRAM0_DQSP[4]	DRAM0_DM[4]	DRAM0_DQ[37]	DRAM0_DQ[49]	RESERVED	DRAM_VDD_S4_ PWROK	SIO_UART1_TXD	SIO_UART1_RTS #	SIO_UART2_RTS #	SIO_I2C3_CLK	SIO_I2C2_CLK	I2S1_L_R	12S1_CLK
в	DRAM0_DQ[33]	DRAM0_DQSN[4]	DRAM0_DQSP[6]	DRAM0_DQ[48]	RESERVED	DRAM_CORE_P WROK	SIO_UART1_RXD	SIO_UART1_CTS #	D1_I2C_CLK	SIO_I2C3_DATA	SIO_I2C2_DATA	I2S1_DATAOUT	SD3_D[1]
A	DRAM0_DQ[36]	vss	DRAM0_DQSN[6]	DRAM0_DQ[52]	vss	RESERVED	RESERVED	vss	D1_I2C_DATA	SIO_PWM[0]	vss	I2S0_DATAOUT	SD3_D[3]
,	DRAM0_DQ[39]	DRAM0_DQ[34]	DRAM0_DQ[53]	DRAM0_DM[6]	DRAM0_DQ[55]	DRAM0_DQ[54]	DRAM0_DQ[50]	RESERVED	SIO_PWM[1]	12S0_CLK	UNCORE_V1P8_ S4	12S0_L_R	I2S0_DATAIN
v			DRAM0_DQ[43]	DRAM0_DQ[42]	DRAM0_DQ[61]	DRAM0_DQ[58]	DRAM_VDD_S4	UNCORE_VNN_ S4	vss	UNCORE_V1P8_ S4	UNCORE_V1P0_ S0iX	SD3_V1P8V3P3_ S4	UNCORE_V1P8 S4
,	DRAM0_DQSP[5]	DRAM0_DM[5]	DRAM0_DQ[40]	DRAM0_DQ[46]	vss	DRAM0_DQ[59]	vss	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_V1P0_ S0iX	UNCORE_V1P0_ S0iX	vss	UNCORE_VNN S4
J	DRAM0_DQSN[5]	vss	DRAM0_DQSN[7]	DRAM0_DQSP[7]	DRAM0_DQ[60]	DRAM0_DQ[62]	DRAM0_DRAMR ST#	DRAM_V1P0_S4	GPIO_S0_SC[65]	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN S4
г	DRAM0_DQ[47]	DRAM0_DQ[41]	DRAM0_DM[7]	DRAM0_DQ[56]	DRAM0_DQ[63]	DRAM0_DQ[57]	DRAM_VDD_S4	vss	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN
2			DRAM0_DQ[44]	DRAM0_DQ[45]	vss	vss	vss	CORE_V1P05_S 4	CORE_V1P05_S 4	vss	vss	vss	UNCORE_VNN S4
	DRAM0_ODT[2]	DRAM0_ODT[0]	DRAM0_CS[2]#	DRAM0_CS[0]#	DRAM0_WE#	DRAM0_CAS#	DRAM_V1P24_S 0iX_F1	vss	vss	CORE_VCC_S0iX	CORE_VCC_S0iX	CORE_VCC_S0iX	CORE_VCC_S0
1	DRAM0_MA[07]	vss	DRAM0_MA[02]	DRAM0_RAS#	vss	DRAM0_MA[10]	DRAM0_BS[1]	DRAM_V1P0_S4	vss	vss	CORE_VCC_S0iX	CORE_VCC_S0iX	vss
Л	DRAM0_MA[12]	DRAM0_MA[00]	DRAM0_MA[13]	DRAM0_MA[04]	DRAM0_BS[0]	DRAM0_MA[03]	DRAM_VDD_S4	DRAM_V1P0_S4	vss	CORE_V1P05_S 4	CORE_VCC_S0iX	CORE_VCC_S0iX	vss
-			DRAM0_MA[01]	DRAM0_MA[05]	vss	DRAM_VDD_S4	DRAM_VDD_S4		CORE_V1P05_S 4	CORE_VCC_S0iX	CORE_VCC_S0iX	CORE_VCC_S0iX	UNCORE_VNN S4
<	DRAM0_MA[11]	DRAM0_MA[06]	DRAM0_MA[15]	DRAM0_BS[2]	DRAM0_CKN[2]	DRAM0_CKP[2]	VSS	DRAM_VDD_S4	CORE_V1P05_S 4	CORE_VCC_S0iX	CORE_VCC_S0iX	CORE_VCC_S0iX	CORE_VCC_S0
,	DRAM0_MA[08]	VSS	DRAM0_CKP[0]	DRAM0_CKN[0]	DRAM0_DQ[29]	DRAM0_DQ[30]	VSS	vss	CORE_VCC_S0iX	CORE_V1P05_S 4	MIPI_V1P8_S4	VSS	vss
4	DRAM0_MA[14]	DRAM0_MA[09]	DRAM0_DQ[27]	DRAM0_DQ[31]	vss	DRAM0_DQSP[3]	DRAM0_DQSN[3]	DRAM_V1P0_S4	vss	CORE_VCC_S0iX	CORE_VCC_S0iX	CORE_VCC_S0iX	UNCORE_V1P2 _S0iX_F4
3			DRAM0_CKE[1]	DRAM0_CKE[0]	DRAM0_DQ[28]	DRAM0_DQ[26]	DRAM_V1P0_S4	CORE_V1P05_S 4	CORE_V1P05_S 4	vss	CORE_VCC_S0iX	vss	UNCORE_V1P2 _S0iX_F4
-	DRAM0_DQ[19]	DRAM0_DQ[23]	DRAM0_CKE[2]	DRAM0_CKE[3]	DRAM0_DQ[25]	DRAM0_DQ[24]	DRAM0_DM[3]	GPIO_S0_NC[24]	MDSI_A_TE	PROCHOT#	CORE_VCC_S0iX	USB_OC[1]#	USB_OC[0]#
=	DRAM0_DQ[16]	vss	DRAM0_DQ[11]	DRAM0_DQ[13]	vss	DRAM0_DQ[14]	DRAM0_DQ[10]	vss	GPIO_S0_NC[25]	GPIO_S0_NC[26]	vss	DDI0_HPD	PCU_SPI_MISC
0	DRAM0_DM[2]	DRAM0_DQ[21]	DRAM0_DQ[09]	DRAM0_DQ[12]	DRAM0_DM[1]	DRAM0_DQ[15]	DRAM0_DQSP[0]	DRAM0_DQ[00]			GPIO_S0_NC[22]	GPIO_S0_NC[23]	DDI0_DDCDATA
2	DRAM0_DQSN[2]	DRAM0_DQSP[2]	DRAM0_DQ[18]	DRAM0_DQSP[1]	DRAM0_DQSN[1]	DRAM0_DQ[08]	DRAM0_DQSN[0]	DRAM0_DQ[03]			GPIO_S0_NC[17]		DDI0_DDCCLK
3	PWR_RSVD_OB S	DRAM0_DQ[20]	DRAM0_DQ[22]	DRAM0_DQ[07]	vss	DRAM0_DQ[05]		DRAM0_DQ[01]	vss	GPIO_S0_NC[16]		DDI1_VDDEN	vss
	PWR_RSVD_OB	vss	DRAMA DOI171	DRAM0_DQ[04]	DD4440 DOIGO	DDAMA DMO	0	DRAM0_DQ[06]	CORE_V1P05_S			DDI1_BKLTEN	DDI1_BKLTCTL


Figure 48. Type 3 Pin Location (Top View, Center) - Part B

	12	11	10	9	8	7	6	5	4	3	2	1
Æ	SIO_I2C0_DATA		SD3_RCOMP	SD2_CLK	MMC1_CLK		MMC1_RCOMP	GPIO_S0_SC[54]	PMC_PLT_CLK[1]	RESERVED	vss	RESERVED
ΔD	SIO_I2C0_CLK		SD2_D[3]_CD#	vss	MMC1_RST#		GPIO_S0_SC[61]	VSS	PMC_PLT_CLK[3]		PMC_PLT_CLK[4]	RESERVED
AC.	SD3_CLK		SD2_D[2]	SD2_CMD	MMC1_D[2]	MMC1_D[1]	GPIO_S0_SC[57]	GPIO_S0_SC[03]			RESERVED	RESERVED
ΝВ	SD3_CMD	SD2_D[0]	SD2_D[1]	MMC1_D[3]	MMC1_CMD	MMC1_D[0]		PMC_PLT_CLK[0]	DDI0_TXP[0]	DDI0_TXN[0]	DDI0_TXP[1]	UNCORE_VN S4
VA.	SD3_D[2]	vss	SD3_PWREN#	MMC1_D[4]	MMC1_D[5]	vss	GPIO_S0_SC[01]		DDI_RCOMP_N	DDI_RCOMP_P	vss	DDI0_TXN[1
Υ	SD3_CD#	vss	I2S1_DATAIN	SD3_1P8EN	MMC1_D[6]	MMC1_D[7]	GPIO_S0_SC[02]	DDI1_AUXP	DDI0_TXP[3]	DDI0_TXN[3]	DDI0_TXP[2]	DDI0_TXN[2
w	UNCORE_V1P8_ S4	vss	GPIO_V1P0_S4	vss	vss	vss	DDI1_AUXN	vss	RESERVED	RESERVED		
v	vss	UNCORE_VNN_ S4	UNCORE_VNN_ S4	vss	vss	vss	vss	DDI1_TXP[1]	DDI1_TXN[1]	ICLK_OSCIN	ICLK_OSCOUT	ICLK_ICOMF
U	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN_ S4	vss	DDI_V1P0_S0iX	DDI1_TXP[0]	DDI1_TXN[0]	DDI1_TXN[3]	DDI1_TXP[3]	RESERVED	vss	DDI1_TXN[2
т	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_V1P0_ S0iX	vss	DDI_V1P0_S0iX	DDI_V1P0_S0iX	MDSI_A_DN[2]	MDSI_A_DP[2]	MDSI_A_DN[0]	MDSI_A_DP[0]	Reserved	DDI1_TXP[2
R	vss	UNCORE_V1P0_ S0iX	UNCORE_V1P0_ S0iX	vss	UNCORE_VNN_ S4	vss	vss	vss	MDSI_A_DN[1]	MDSI_A_DP[1]		
Р	UNCORE_V1P24 _S0iX_F5	RESERVED	RESERVED	UNCORE_V1P24 _S0iX_F1	vss	MIPI_V1P24_S4	MDSI_A_DN[3]	MDSI_A_CLKN	MDSI_A_CLKP	MCSI1_DN[0]	MCSI1_DP[0]	MDSI_RCOM
N	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN_ S4	vss	ICLK_V1P24_S4_ F2	MIPI_V1P24_S4	MDSI_A_DP[3]	RESERVED	USB_ULPI_NXT	USB_ULPI_CLK	vss	MCSI1_DP[1
м	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN_ S4	UNCORE_VNN_ S4	ICLK_V1P24_S4_ F1	MCSI1_CLKP	MCSI1_CLKN	MCSI1_DN[2]	MCSI1_DP[2]	USB_ULPI_STP	MCSI1_DN[1
L	UNCORE_VNN_ S4	UNCORE_VNN_ S4	vss	UNCORE_VNN_ S4	vss	UNCORE_V1P0_ G3	vss	vss	MCSI1_DP[3]	MCSI1_DN[3]		
ĸ	UNCORE_VNN_ S4	vss	PMC_V1P8_G3	UNCORE_V1P0_ G3	UNCORE_V1P0_ G3	UNCORE_V1P0_ G3	MCSI2_DN[0]	MCSI2_CLKP	MCSI2_CLKN		USB_ULPI_DATA [7]	MCSI_RCOM
J	vss	vss	PMC_V1P8_G3	UNCORE_V1P0_ G3	vss	UNCORE_V1P0_ G3	MCSI2_DP[0]		USB_ULPI_DATA [2]	USB_ULPI_DATA [5]	vss	USB_ULPI_DA [6]
н	UNCORE_V1P0_ S0iX	UNCORE_V1P0_ S0iX	PMC_V1P8_G3	USB_V3P3_S0iX	UNCORE_V1P0_ S4	USB_V1P0_S4	TAP_TMS		USB_DP[1]	USB_DN[1]	USB_ULPI_DATA [4]	USB_ULPI_DA [3]
G	PCU_V3P3_G3	UNCORE_V1P8_ G3	vss	vss	USB_V1P0_S4	USB_VSSA	TAP_TRST#	vss		USB_DN[0]		
F	PCU_SPI_CLK	RTC_VCC	USB_ULPI_REFC LK	GPIO_S5[02]	GPIO_S5[04]	TAP_PRDY#	TAP_TDO	TAP_PREQ#	TAP_TDI	PMC_RSMRST#	PMC_CORE_PW ROK	USB_RCOMF
E	PCU_SPI_MOSI	vss	PMC_SUS_STAT #	GPIO_S5[00]	GPIO_S5[03]	vss	GPIO_S5[09]	TAP_TCK	ILB_RTC_RST#	ILB_RTC_TEST#	vss	ILB_RTC_X
D	PCU_SPI_CS[1]#	SVID_CLK	PMC_SUSPWRD NACK	GPIO_S5[17]	PMC_SLP_S4#	GPIO_S5[01]	GPIO_S5[05]	GPIO_S5[07]	GPIO_S5[06]	GPIO_S5[08]	ILB_RTC_EXTPA D	ILB_RTC_X1
С	PCU_SPI_CS[0]#	SVID_DATA	SVID_ALERT#	PMC_BATLOW#	PMC_SLP_S3#	PMC_SLP_S0IX#	USB_ULPI_RST#	GPIO_S5[10]	GPIO_S5[29]	GPIO_S5[28]	GPIO_S5[27]	USB_REXT[0
в	DDI1_HPD		GPIO_S5[15]	vss	PMC_ACPRESE NT		PMC_PLTRST#	vss	GPIO_S5[23]	GPIO_S5[25]	GPIO_S5[26]	vss
A	CORE_VCC_S0iX		PMC PWRBTN#	PMC_SUSCLK_0	USB REXT[1]		GPIO_S5[22]	GPIO_S5[30]	GPIO_RCOMP	GPIO_S5[24]	RESERVED	

30.2.3 Package Diagrams

Figure 49. Type 3 Package Mechanical Drawing

31 SoC Pin Location

31.1 Type 4 SoC - Pin List Location

Ball #	Customer Name
A11	VSS
A13	VIS_V1P0_S0iX
A15	VSS
A17	CORE_VCC_S0iX
A19	CORE_VCC_S0iX
A21	CORE_VCC_S0iX
A23	CORE_VCC_S0iX
A25	CORE_VCC_S0iX
A27	VSS
A3	VSS
A30	CORE_V1P05_S4
A33	CORE_V1P05_S4
A35	CORE_V1P05_S4
A37	VSS
A39	VSS
A41	DRAM_V1P0_S0iX
A43	DRAM_V1P0_S0iX
A45	VSS
A47	VSS
A49	VSS
A5	VSS
A51	VSS
A53	VSS
A55	VSS
A57	VSS
A7	VSS
A9	VIS_V1P0_S0iX
AA1	USB3DEV_V1P0_S4
AA11	VSS
AA15	VSS
AA17	PWR_RVD_V1P0_OBS
AA19	UNCORE_VNN_S4

Ball #	Customer Name
AA21	UNCORE_VNN_S4
AA23	VSS
AA25	UNCORE_VNN_S4
AA27	VSS
AA29	VSS
AA3	MDSI_C_DN[0]
AA32	CORE_VCC_S0iX
AA34	CORE_VCC_S0iX
AA36	CORE_VCC_S0iX
AA38	VSS
AA40	VSS
AA42	VSS
AA44	PWR_RVD_V1P5_OBS
AA46	VSS
AA49	DRAM0_DQ[34]
AA5	MDSI_C_DP[0]
AA51	DRAM0_DQ[38]
AA53	DRAM0_DQ[37]
AA55	DRAM0_DQ[45]
AA57	DRAM0_DQ[53]
AA59	DRAM_VDD_S4
AA7	VSS
AA9	MCSI2_DP[0]
AB10	MCSI3_CLKN
AB12	VSS
AB2	VSS
AB4	MDSI_C_DP[1]
AB48	DRAM0_DQ[57]
AB50	DRAM0_DQ[63]
AB52	VSS
AB54	DRAM0_DQ[48]
AB56	DRAM0_DQ[51]

Ball #	Customer Name
AB58	VSS
AB6	VSS
AB8	MCSI2_DN[0]
AC1	VSS
AC11	MCSI1_DN[3]
AC14	VSS
AC16	RESERVED
AC18	VSS
AC20	UNCORE_VNN_S4
AC22	UNCORE_VNN_S4
AC24	VSS
AC26	UNCORE_VNN_S4
AC28	VSS
AC3	MDSI_C_CLKP
AC31	VSS
AC33	CORE_VCC_S0iX
AC35	CORE_VCC_S0iX
AC37	CORE_V1P05_S4
AC39	VSS
AC41	VSS
AC43	DRAM_V1P0_S0iX
AC45	DRAM_VDD_S4
AC49	VSS
AC5	MDSI_C_DN[1]
AC51	DRAM0_DQ[60]
AC53	VSS
AC55	DRAM0_DQ[52]
AC57	DRAM0_DQ[49]
AC59	DRAM_VDD_S4
AC7	VSS
AC9	MCSI3_CLKP
AD10	MCSI1_DP[3]
AD12	MDSI_RCOMP
AD15	ULPI_V1P8_G3
AD17	VSS
AD19	UNCORE_VNN_S4
AD2	VSS

Ball #	Customer Name
AD21	UNCORE_VNN_S4
AD23	VSS
AD25	UNCORE_VNN_S4
AD27	UNCORE_VNN_S4
AD29	UNCORE_VNN_S4
AD32	UNCORE_VNN_S4
AD34	UNCORE_VNN_S4
AD36	CORE_V1P05_S4
AD38	VSS
AD4	MDSI_C_CLKN
AD40	VSS
AD42	VSS
AD44	VSS
AD46	VSS
AD48	DRAM0_DQ[62]
AD50	DRAM0_DQSN[7]
AD52	VSS
AD54	VSS
AD56	VSS
AD58	DRAM0_DQSP[6]
AD6	VSS
AD8	VSS
AE1	UNCORE_V1P24_S0iX _F6
AE11	VSS
AE3	MDSI_A_CLKP
AE49	DRAM0_DQ[58]
AE5	MDSI_A_CLKN
AE51	DRAM0_DQSP[7]
AE53	DRAM0_DM[7]
AE55	DRAM0_DM[6]
AE57	DRAM0_DQSN[6]
AE59	DRAM_VDD_S4
AE7	VSS
AE9	MCSI1_DN[2]
AF10	MCSI1_DN[1]
AF12	VSS
AF14	MCSI_RCOMP

Ball #	Customer Name
AF16	VSS
AF18	VSS
AF2	MIPI_V1P2_S4
AF20	UNCORE_VNN_S4
AF22	UNCORE_VNN_S4
AF24	VSS
AF26	UNCORE_VNN_S4
AF28	VSS
AF31	VSS
AF33	CORE_VCC_S0iX
AF35	CORE_VCC_S0iX
AF37	VSS
AF39	PWR_RVD_V1P0_OBS
AF4	MDSI_A_DP[2]
AF41	VSS
AF43	VSS
AF45	VSS
AF48	DRAM0_DQ[61]
AF50	DRAM0_DQ[59]
AF52	DRAM0_DQ[56]
AF54	VSS
AF56	DRAM0_DQ[55]
AF58	VSS
AF6	VSS
AF8	MCSI1_DP[2]
AG1	MIPI_V1P2_S4
AG11	MCSI1_CLKP
AG3	MDSI_A_DN[3]
AG49	VSS
AG5	MDSI_A_DN[2]
AG51	VSS
AG53	VSS
AG55	DRAM0_DQ[50]
AG57	DRAM0_DQ[54]
AG59	VSS
AG7	VSS
AG9	MCSI1_DP[1]

Ball #	Customer Name
AH10	MCSI1_CLKN
AH12	ICLK_RCOMP
AH15	VSS
AH17	VSS
AH19	UNCORE_VNN_S4
AH2	VSS
AH21	UNCORE_VNN_S4
AH23	VSS
AH25	UNCORE_VNN_S4
AH27	UNCORE_V1P24_S0iX _F5
AH29	VSS
AH32	CORE_VCC_S0iX
AH34	CORE_VCC_S0iX
AH36	CORE_VCC_S0iX
AH38	PWR_RVD_V1P0_OBS
AH4	MDSI_A_DP[3]
AH40	VSS
AH42	VSS
AH44	DRAM_V1P0_S0iX
AH46	VSS
AH48	DRAM_RCOMP[2]
AH50	DRAM_RCOMP[0]
AH52	VSS
AH54	VSS
AH56	VSS
AH58	VSS
AH6	VSS
AH8	VSS
AK1	VSS
AK11	VSS
AK14	ICLK_ICOMP
AK16	VSS
AK18	VSS
AK20	UNCORE_VNN_S4
AK22	UNCORE_VNN_S4
AK24	VSS
AK26	UNCORE_VNN_S4

Ball #	Customer Name
AK28	VSS
AK3	MDSI_A_DP[0]
AK31	CORE_VCC_S0iX
AK33	VSS
AK35	CORE_VCC_S0iX
AK37	CORE_VCC_S0iX
AK39	CORE_V1P05_S4
AK41	VSS
AK43	VSS
AK45	DRAM_V1P24_S0IX_F
AK49	DRAM_VCC_S4_PWRO
AK5	VSS
AK51	DRAM_RCOMP[1]
AK53	VSS
AK55	DRAM_CORE_PWROK
AK57	DRAM_VREF
AK59	VSS
AK7	RESERVED
AK9	MCSI1_DP[0]
AM10	RESERVED
AM12	VSS
AM15	ICLK_V1P24_S4_F1
AM17	VSS
AM19	UNCORE_VNN_S4
AM2	MDSI_A_DN[1]
AM21	UNCORE_VNN_S4
AM23	VSS
AM25	UNCORE_VNN_S4
AM27	VSS
AM29	CORE_VCC_S0iX
AM32	CORE_VCC_S0iX
AM34	VSS
AM36	CORE_VCC_S0iX
AM38	VSS
AM4	MDSI_A_DN[0]
AM40	VSS

Ball #	Customer Name
AM42	VSS
AM44	VSS
AM46	VSS
AM48	ICLK_DRAM_TERMP
AM50	ICLK_DRAM_TERMN
AM52	VSS
AM54	VSS
AM56	VSS
AM58	VSS
AM6	VSS
AM8	MCSI1_DN[0]
AN1	UNCORE_V1P0_S4
AN11	RESERVED
AN3	MDSI_A_DP[1]
AN49	VSS
AN5	RESERVED
AN51	VSS
AN53	VSS
AN55	DRAM1_DQ[50]
AN57	DRAM1_DQ[54]
AN59	VSS
AN7	RESERVED
AN9	RESERVED
AP10	RESERVED
AP12	ICLK_V1P24_S4_F2
AP14	VSS
AP16	UNCORE_V1P24_S0iX _F1
AP18	RESERVED
AP2	UNCORE_V1P0_S4
AP20	UNCORE_VNN_S4
AP22	UNCORE_VNN_S4
AP24	VSS
AP26	UNCORE_VNN_S4
AP28	VSS
AP31	CORE_VCC_S0iX
AP33	CORE_VCC_S0iX
AP35	CORE_VCC_S0iX

Ball #	Customer Name
AP37	VSS
AP39	VSS
AP4	RESERVED
AP41	VSS
AP43	RESERVED
AP45	RESERVED
AP48	DRAM1_DQ[61]
AP50	DRAM1_DQ[59]
AP52	DRAM1_DQ[56]
AP54	VSS
AP56	DRAM1_DQ[55]
AP58	VSS
AP6	VSS
AP8	VSS
AR1	VSS
AR11	VSS
AR3	RESERVED
AR49	DRAM1_DQ[58]
AR5	VSS
AR51	DRAM1_DQSN[7]
AR53	DRAM1_DM[7]
AR55	DRAM1_DM[6]
AR57	DRAM1_DQSN[6]
AR59	DRAM_VDD_S4
AR7	ICLK_OSCIN
AR9	VSS
AT10	VSS
AT12	VSS
AT15	VSS
AT17	RESERVED
AT19	UNCORE_V1P0_S0iX
AT2	RESERVED
AT21	UNCORE_V1P0_S0iX
AT23	UNCORE_VNN_S4
AT25	VSS
AT27	UNCORE_VNN_S4
AT29	VSS

Ball #	Customer Name
AT32	CORE_VCC_S0iX
AT34	CORE_VCC_S0iX
AT36	VCC_VSSSENSE
AT38	VCC_SENSE
AT4	DDI1_TXP[0]
AT40	VSS
AT42	VSS
AT44	RESERVED
AT46	RESERVED
AT48	DRAM1_DQ[62]
AT50	DRAM1_DQSP[7]
AT52	VSS
AT54	VSS
AT56	VSS
AT58	DRAM1_DQSP[6]
AT6	VSS
AT8	ICLK_OSCOUT
AU1	VSS
AU11	DDI1_TXP[3]
AU14	DDI_V1P0_S0iX
AU16	VSS
AU18	VSS
AU20	UNCORE_VNN_S4
AU22	UNCORE_VNN_S4
AU24	VSS
AU26	UNCORE_VNN_S4
AU28	UNCORE_VNN_S4
AU3	DDI1_TXN[0]
AU31	VSS
AU33	VSS
AU35	VSS
AU37	VSS
AU39	VSS
AU41	VSS
AU43	VSS
AU45	VSS
AU49	VSS

Ball #	Customer Name
AU5	DDI1_TXN[1]
AU51	DRAM1_DQ[60]
AU53	VSS
AU55	DRAM1_DQ[52]
AU57	DRAM1_DQ[49]
AU59	DRAM_VDD_S4
AU7	VSS
AU9	VSS
AV10	DDI1_TXN[3]
AV12	VSS
AV2	DDI_V1P0_S0iX
AV4	DDI1_TXP[1]
AV48	DRAM1_DQ[57]
AV50	DRAM1_DQ[63]
AV52	VSS
AV54	DRAM1_DQ[48]
AV56	DRAM1_DQ[51]
AV58	VSS
AV6	RESERVED
AV8	VSS
AW1	DDI_V1P0_S0iX
AW11	VSS
AW15	DDI_V1P0_S0iX
AW17	VSS
AW19	UNCORE_VNN_S4
AW21	UNCORE_VNN_S4
AW23	VSS
AW25	UNCORE_VNN_S4
AW27	UNCORE_VNN_S4
AW29	UNCORE_VNN_S4
AW3	DDI1_TXN[2]
AW32	UNCORE_VNN_S4
AW34	UNCORE_VNN_S4
AW36	UNCORE_VNN_S4
AW38	UNCORE_VNN_S4
AW40	UNCORE_VNN_S4
AW42	VSS

Ball #	Customer Name
AW44	DRAM_V1P0_S0iX
AW46	VSS
AW49	DRAM1_DQ[34]
AW5	VSS
AW51	DRAM1_DQ[38]
AW53	DRAM1_DQ[37]
AW55	DRAM1_DQ[45]
AW57	DRAM1_DQ[53]
AW59	DRAM_VDD_S4
AW7	VSS
AW9	VSS
AY10	DDI1_AUXN
AY12	VSS
AY2	RESERVED
AY4	DDI1_TXP[2]
AY48	DRAM1_DQ[39]
AY50	DRAM1_DQSN[4]
AY52	DRAM1_DM[4]
AY54	DRAM1_DQ[46]
AY56	VSS
AY58	DRAM1_DQ[44]
AY6	VSS
AY8	VSS
B10	VIS_V1P0_S0iX
B12	TAP_PRDY#
B14	VIS_V1P0_S0iX
B16	GPIO_S5[22]
B18	CORE_VCC_S0iX
B2	VSS
B20	VSS
B22	CORE_VCC_S0iX
B24	USB_OC[1]#
B26	CORE_VCC_S0iX
B28	SVID_DATA
B32	VSS
B34	MDSI_DDCDATA
B36	CORE_V1P05_S4

Ball #	Customer Name
B38	MCSI_GPIO[05]
B4	VSS
B40	DRAM_V1P0_S0iX
B42	DRAM0_DQ[08]
B44	VSS
B46	DRAM0_DQ[11]
B48	VSS
B50	DRAM0_DQSP[2]
B52	VSS
B54	DRAM0_ODT[0]
B56	DRAM0_CS[2]#
B58	VSS
B6	VSS
B8	ILB_RTC_X1
BA1	VSS
BA11	DDI1_AUXP
BA14	VSS
BA16	VSS
BA18	VSS
BA20	UNCORE_VNN_S4
BA22	VNN_SENSE
BA24	VSS
BA26	VSS
BA28	UNCORE_VNN_S4
BA3	RESERVED
BA31	VSS
BA33	VSS
BA35	UNCORE_VNN_S4
BA37	VSS
BA39	UNCORE_VNN_S4
BA41	UNCORE_VNN_S4
BA43	VSS
BA45	DRAM_VDD_S4
BA49	VSS
BA5	DDI0_TXP[3]
BA51	DRAM1_DQSP[4]
BA53	VSS

Ball #	Customer Name
BA55	DRAM1_DQSP[5]
BA57	DRAM1_DM[5]
BA59	DRAM_VDD_S4
BA7	VSS
BA9	DDI0_RCOMP_P
BB10	ICLK_DDI0_TERMN
BB12	VSS
BB15	PWR_RVD_V1P0
BB17	VSS
BB19	UNCORE_VNN_S4
BB2	PWR_RVD_V1P0
BB21	UNCORE_VNN_S4
BB23	VSS
BB25	UNCORE_VNN_S4
BB27	VSS
BB29	VSS
BB32	UNCORE_VNN_S4
BB34	VSS
BB36	VSS
BB38	UNCORE_VNN_S4
BB4	DDI0_TXN[3]
BB40	UNCORE_VNN_S4
BB42	VSS
BB44	PWR_RVD_V1P0_OBS
BB46	VSS
BB48	DRAM1_DQ[36]
BB50	DRAM1_DQ[35]
BB52	VSS
BB54	VSS
BB56	DRAM1_DQSN[5]
BB58	VSS
BB6	VSS
BB8	DDI0_RCOMP_N
BC1	PWR_RVD_V1P0
BC11	RESERVED
BC3	DDI0_AUXP
BC49	VSS

Ball #	Customer Name
BC5	VSS
BC51	VSS
BC53	VSS
BC55	DRAM1_DQ[40]
BC57	DRAM1_DQ[41]
BC59	VSS
BC7	VSS
BC9	ICLK_DDI0_TERMP
BD10	RESERVED
BD12	VSS
BD14	PWR_RVD_V1P0
BD16	VSS
BD18	VSS
BD2	DDI0_AUXN
BD20	UNCORE_VNN_S4
BD22	UNCORE_VNN_S4
BD24	UNCORE_VNN_S4
BD26	UNCORE_VNN_S4
BD28	UNCORE_VNN_S4
BD31	UNCORE_VNN_S4
BD33	UNCORE_VNN_S4
BD35	UNCORE_VNN_S4
BD37	UNCORE_VNN_S4
BD39	UNCORE_VNN_S4
BD4	DDI0_TXN[1]
BD41	VSS
BD43	VSS
BD45	VSS
BD48	DRAM1_DQ[33]
BD50	DRAM1_DQ[32]
BD52	DRAM1_CA[9]
BD54	DRAM1_DQ[43]
BD56	VSS
BD58	DRAM1_DQ[47]
BD6	VSS
BD8	VSS
BE1	VSS

Ball #	Customer Name
BE11	VSS
BE3	DDI0_TXP[1]
BE49	DRAM1_CA[4]
BE5	DDI0_TXN[2]
BE51	DRAM1_CA[5]
BE53	RESERVED
BE55	DRAM1_DQ[42]
BE57	VSS
BE59	VSS
BE7	VSS
BE9	DDI0_TXN[0]
BF10	RESERVED
BF12	VSS
BF15	VSS
BF17	VSS
BF19	VSS
BF2	PWR_RVD_V1P0
BF21	VSS
BF23	VSS
BF25	VSS
BF27	VSS
BF29	VSS
BF32	GPIO_V1P0_S4
BF34	VSS
BF36	LPE_V1P8_S4
BF38	VSS
BF4	DDI0_TXP[2]
BF40	VSS
BF42	VSS
BF44	VSS
BF46	VSS
BF48	DRAM1_CA[8]
BF50	DRAM1_CA[6]
BF52	VSS
BF54	DRAM1_CKP[2]
BF56	DRAM1_CKN[2]
BF58	VSS

Ball #	Customer Name
BF6	VSS
BF8	DDI0_TXP[0]
BG1	PWR_RVD_V1P0
BG11	RESERVED
BG3	RESERVED
BG49	VSS
BG5	VSS
BG51	DRAM1_CA[1]
BG53	VSS
BG55	DRAM1_CKN[0]
BG57	DRAM1_CKP[0]
BG59	DRAM_VDD_S4
BG7	VSS
BG9	RESERVED
BH10	RESERVED
BH12	VSS
BH14	GPIO_S0_1
BH16	GPIO_S0_SC[054]
BH18	ILB_LPC_RCOMP
BH2	RESERVED
BH20	VSS
BH22	MMC1_RST#
BH24	MMC1_RCOMP
BH26	SD3_RCOMP
BH28	AUDIO_RCOMP
BH32	VSS
BH34	SIO_I2C3_CLK
BH36	SIO_SPI_MISO
BH38	VSS
BH4	RESERVED
BH40	VSS
BH42	VSS
BH44	DRAM1_DM[2]
BH46	DRAM1_DQ[19]
BH48	RESERVED
BH50	DRAM1_CA[0]
BH52	VSS

Ball #	Customer Name
BH54	RESERVED
BH56	VSS
BH58	VSS
BH6	VSS
BH8	VSS
BJ1	VSS
ВЈ11	VSS
BJ13	VSS
BJ15	VSS
BJ17	VSS
BJ19	MMC1_D[6]
BJ21	MMC1_D[0]
BJ23	VSS
BJ25	SD3_D[2]
BJ27	VSS
ВЈ3	RESERVED
BJ30	SIO_I2C0_DATA
BJ33	SIO_I2C2_CLK
BJ35	VSS
BJ37	SIO_PWM[1]
BJ39	VSS
BJ41	VSS
BJ43	DRAM1_DQ[21]
BJ45	VSS
BJ47	DRAM1_DQ[27]
BJ49	RESERVED
ВЈ5	RESERVED
BJ51	DRAM1_CA[2]
BJ53	RESERVED
BJ55	DRAM1_CA[3]
BJ57	DRAM1_CA[7]
BJ59	DRAM_VDD_S4
ВЈ7	VSS
ВЈ9	RESERVED
BK10	RESERVED
BK12	SD3_PWREN#
BK14	GPIO_SO_0

Ball #	Customer Name
BK16	I2S1_DATAIN
BK18	ILB_LPC_AD[0]
BK2	UNCORE_VNN_S4
BK20	VSS
BK22	MMC1_D[4]
BK24	SD2_D[3]_CD#
BK26	SD3_D[1]
BK28	I2S1_L_R
BK32	SIO_I2CO_CLK
BK34	SIO_I2C6_CLK
BK36	LPE_I2S2_DATAOUT
BK38	SIO_UART1_CTS#
BK4	RESERVED
BK40	NFC_I2C_DATA
BK42	DRAM1_DQ[16]
BK44	DRAM1_DQSN[2]
BK46	DRAM1_DQ[23]
BK48	VSS
BK50	VSS
BK52	DRAM1_DQ[29]
BK54	VSS
BK56	DRAM1_CKE[2]
BK58	VSS
BK6	VSS
BK8	RESERVED
BL1	UNCORE_VNN_S4
BL11	GPIO_S0_SC[006]
BL13	VSS
BL15	GPIO_S0_SC[052]
BL17	ILB_LPC_CLK[1]
BL19	ILB_LPC_AD[1]
BL21	MMC1_D[7]
BL23	VSS
BL25	SD3_CLK
BL27	I2S0_DATAIN
BL3	VSS
BL30	VSS

Ball #	Customer Name
BL33	SIO I2C1 CLK
BL35	SIO_SPI_CS#
BL37	LPE_I2S2_CLK
BL39	SIO_UART1_TXD
BL41	VSS
BL43	DRAM1_DQSP[2]
BL45	DRAM1_DQ[18]
BL47	DRAM1_DQ[20]
BL49	DRAM1_DQ[28]
BL5	VSS
BL51	DRAM1_DM[3]
BL53	DRAM1_DQ[31]
BL55	RESERVED
BL57	DRAM1_CS[0]#
BL59	DRAM_VDD_S4
BL7	VSS
BL9	RESERVED
BM10	VSS
BM12	GPIO_S0_2
BM14	GPIO_S0_SC[053]
BM16	VSS
BM18	VSS
BM2	VSS
BM20	MMC1_D[1]
BM22	VSS
BM24	SD2_D[1]
BM26	VSS
BM28	VSS
BM32	SIO_I2C2_DATA
BM34	VSS
BM36	VSS
BM38	SIO_UART2_RXD
BM4	P_RCOMP_N
BM40	VSS
BM42	DRAM1_DQ[22]
BM44	VSS
BM46	VSS

Ball #	Customer Name
BM48	DRAM1_DQ[25]
BM50	DRAM1_DQSP[3]
BM52	DRAM1_DQ[24]
BM54	RESERVED
BM56	VSS
BM58	DRAM1_CKE[0]
BM6	VSS
BM8	VSS
BN1	UNCORE_VNN_S4
BN11	SD3_1P8EN
BN13	VSS
BN15	GPIO_S0_SC[051]
BN17	VSS
BN19	SD3_CD#
BN21	VSS
BN23	VSS
BN25	SD3_CMD
BN27	VSS
BN3	P_RCOMP_P
BN30	VSS
BN33	SIO_I2C3_DATA
BN35	VSS
BN37	SIO_PWM[0]
BN39	VSS
BN41	VSS
BN43	DRAM1_DQ[17]
BN45	VSS
BN47	DRAM1_DQ[26]
BN49	DRAM1_DQ[30]
BN5	RESERVED
BN51	DRAM1_DQSN[3]
BN53	VSS
BN55	RESERVED
BN57	RESERVED
BN59	DRAM_VDD_S4
BN7	PMC_RSTBTN#
BN9	GPIO_S0_SC[007]

Ball #	Customer Name
BP10	VSS
BP12	GPIO_S0_SC[055]
BP14	GPIO_S0_SC[059]
BP16	ILB_LPC_AD[3]
BP18	VSS
BP2	VSS
BP20	MMC1_CLK
BP22	SD2_D[2]
BP24	SD3_D[0]
BP26	VSS
BP28	I2S0_L_R
BP32	VSS
BP34	SIO_I2C5_CLK
BP36	LPE_I2S2_DATAIN
BP38	SIO_UART2_TXD
BP4	RESERVED
BP40	VSS
BP42	DRAM1_DQ[15]
BP44	DRAM1_DQ[13]
BP46	DRAM1_DQ[12]
BP48	VSS
BP50	DRAM1_DQ[01]
BP52	DRAM1_DQ[03]
BP54	RESERVED
BP56	RESERVED
BP58	VSS
BP6	VSS
BP8	PMC_PLT_CLK[0]
BR1	VSS
BR11	ILB_LPC_SERIRQ
BR13	GPIO_S0_SC[058]
BR15	ILB_LPC_AD[2]
BR17	ILB_LPC_CLK[0]
BR19	MMC1_D[3]
BR21	MMC1_D[2]
BR23	SD2_CMD
BR25	I2S1_DATAOUT

Ball #	Customer Name
BR27	I2S0_CLK
BR3	S_RCOMP_P
BR30	SIO_I2C1_DATA
BR33	SIO_I2C6_DATA
BR35	SIO_SPI_MOSI
BR37	SIO_UART2_CTS#
BR39	NFC_I2C_CLK
BR41	VSS
BR43	DRAM1_DQ[14]
BR45	DRAM1_DM[1]
BR47	DRAM1_DQ[04]
BR49	DRAM1_DQ[05]
BR5	VSS
BR51	DRAM1_DM[0]
BR53	VSS
BR55	RESERVED
BR57	RESERVED
BR59	VSS
BR7	PMC_PLT_CLK[1]
BR9	GPIO_S0_SC[004]
BT10	GPIO_S0_SC[003]
BT12	VSS
BT14	SIO_UART3_RXD
BT16	VSS
BT18	ILB_LPC_FRAME#
BT2	VSS
BT20	VSS
BT22	SD2_D[0]
BT24	VSS
BT26	I2S1_CLK
BT28	VSS
BT32	SIO_I2C5_DATA
BT34	VSS
BT36	LPE_I2S2_FRM
BT38	VSS
BT4	S_RCOMP_N
BT40	RESERVED

Ball #	Customer Name
BT42	VSS
BT44	DRAM1_DQSP[1]
BT46	VSS
BT48	DRAM1_DQ[06]
BT50	VSS
BT52	DRAM1_DQ[02]
BT54	VSS
BT56	VSS
BT58	DRAM1_CKE[3]
BT6	PMC_PLT_CLK[3]
BT8	VSS
BU1	VSS
BU11	GPIO_S0_SC[056]
BU13	SIO UART3 TXD
BU15	GPIO_S0_SC[060]
BU17	ILB_LPC_CLKRUN#
BU19	MMC1_D[5]
BU21	MMC1_CMD
BU23	SD2_CLK
BU25	SD3_D[3]
BU27	I2S0_DATAOUT
BU3	VSS
BU30	SIO_I2C4_DATA
BU33	SIO_I2C4_CLK
BU35	SIO_SPI_CLK
BU37	SIO_UART2_RTS#
BU39	SIO_UART1_RTS#
BU41	VSS
BU43	DRAM1_DQ[10]
BU45	DRAM1_DQSN[1]
BU47	DRAM1_DQ[09]
BU49	DRAM1_DQ[07]
BU5	PMC_PLT_CLK[5]
BU51	DRAM1_DQSN[0]
BU53	DRAM1_DQ[00]
BU55	DRAM1_ODT[2]
BU57	DRAM1_CKE[1]

Ball #	Customer Name
BU59	VSS
BU7	PMC_PLT_CLK[2]
BU9	GPIO_S0_SC[005]
BV10	UNCORE_VNN_S4
BV12	VSS
BV14	UNCORE_VNN_S4
BV16	VSS
BV18	LPC_V1P8V3P3_S4
BV2	VSS
BV20	VSS
BV22	UNCORE_V1P8_S4
BV24	VSS
BV26	VIS_V1P0_S0iX
BV28	VSS
BV32	SIO_V1P8_S4
BV34	VSS
BV36	UNCORE_V1P24_S0iX _F2
BV38	SIO_UART1_RXD
BV4	PMC_PLT_CLK[4]
BV40	DRAM_V1P0_S0iX
BV42	DRAM1_DQ[08]
BV44	VSS
BV46	DRAM1_DQ[11]
BV48	VSS
BV50	DRAM1_DQSP[0]
BV52	VSS
BV54	DRAM1_ODT[0]
BV56	DRAM1_CS[2]#
BV58	VSS
BV6	VSS
BV8	VSS
BW11	UNCORE_VNN_S4
BW13	UNCORE_VNN_S4
BW15	VSS
BW17	LPC_V1P8V3P3_S4
BW19	VSS
BW21	UNCORE_V1P8_S4

Ball #	Customer Name
BW23	SDMMC3_V1P8V3P3_ S4
BW25	VSS
BW27	VIS_V1P0_S0iX
BW3	VSS
BW30	VSS
BW33	SIO_V1P8_S4
BW35	UNCORE_V1P24_S0iX _F2
BW37	VSS
BW39	CORE_V1P05_S4
BW41	DRAM_V1P0_S0iX
BW43	DRAM_V1P0_S0iX
BW45	VSS
BW47	VSS
BW49	VSS
BW5	VSS
BW51	VSS
BW53	VSS
BW55	VSS
BW57	VSS
BW7	VSS
BW9	UNCORE_VNN_S4
C1	VSS
C11	TAP_TCK
C13	USB_ULPI_REFCLK
C15	GPIO_S5[26]
C17	GPIO_S5[02]
C19	GPIO_S5[10]
C21	USB_ULPI_RST#
C23	PMC_PWRBTN#
C25	CORE_VCC_S0iX
C27	PCU_SPI_CS[0]#
C3	USB_DN[0]
C30	SVID_CLK
C33	MDSI_DDCCLK
C35	DDI1_DDCCLK
C37	MDSI_C_TE

Ball #	Customer Name
C39	MCSI_GPIO[04]
C41	VSS
C43	DRAM0_DQ[10]
C45	DRAM0_DQSN[1]
C47	DRAM0_DQ[09]
C49	DRAM0_DQ[20]
C5	USB_DN[3]
C51	DRAM0_DQSN[2]
C53	DRAM0_DQ[19]
C55	DRAM0_ODT[2]
C57	DRAM0_CKE[1]
C59	VSS
C7	ILB_RTC_X2
C9	PMC_RSMRST#
D10	ILB_RTC_TEST#
D12	VSS
D14	GPIO_S5[06]
D16	VSS
D18	GPIO_S5[04]
D2	USB_DP[0]
D20	VSS
D22	PMC_SLP_S3#
D24	VSS
D26	CORE_VCC_S0iX
D28	VSS
D32	DDI0_DDCCLK
D34	VSS
D36	MDSI_A_TE
D38	VSS
D4	USB_DP[1]
D40	MCSI_GPIO[06]
D42	VSS
D44	DRAM0_DQSP[1]
D46	VSS
D48	DRAM0_DQ[18]
D50	VSS
D52	DRAM0_DQ[23]

Ball #	Customer Name
D54	VSS
D56	VSS
D58	DRAM0_CKE[3]
D6	USB_DP[3]
D8	VSS
E1	VSS
E11	TAP_TDI
E13	RCOMP18
E15	GPIO_S5[27]
E17	GPIO_S5[00]
E19	GPIO_S5[03]
E21	PMC_ACPRESENT
E23	PMC_BATLOW#
E25	CORE_VCC_S0iX
E27	PCU_SPI_MOSI
E3	USB_DN[1]
E30	SVID_ALERT#
E33	PROCHOT#
E35	DDI1_HPD
E37	MCSI_GPIO[03]
E39	MCSI_GPIO[09]
E41	VSS
E43	DRAM0_DQ[14]
E45	DRAM0_DM[1]
E47	DRAM0_DQ[17]
E49	DRAM0_DQ[16]
E5	USB_DP[2]
E51	DRAM0_DM[2]
E53	VSS
E55	RESERVED
E57	RESERVED
E59	VSS
E7	RESERVED
E9	ILB_RTC_EXTPAD
F10	VSS
F12	TAP_PREQ#
F14	GPIO_S5[05]

Ball #	Customer Name
F16	GPIO_S5[25]
F18	VSS
F2	VSS
F20	PMC_SUS_STAT#
F22	PMC_SUSCLK_0
F24	USB_OC[0]#
F26	CORE_VCC_S0iX
F28	PCU_SPI_CLK
F32	VSS
F34	DDI0_BKLTCTL
F36	DDI1_DDCDATA
F38	MCSI_GPIO[02]
F4	USB_DN[2]
F40	VSS
F42	DRAM0_DQ[15]
F44	DRAM0_DQ[13]
F46	DRAM0_DQ[12]
F48	VSS
F50	DRAM0_DQ[22]
F52	DRAM0_DQ[21]
F54	RESERVED
F56	RESERVED
F58	VSS
F6	VSS
F8	VSS
G1	USB_V1P8_G3
G11	ILB_RTC_RST#
G13	VSS
G15	GPIO_S5[08]
G17	VSS
G19	GPIO_S5[29]
G21	VSS
G23	VSS
G25	CORE_VCC_S0iX
G27	VSS
G3	USB3_RXP[0]
G30	VSS

Ball #	Customer Name
G33	DDI0_BKLTEN
G35	VSS
G37	MCSI_GPIO[07]
G39	VSS
G41	VSS
G43	DRAM0_DQ[07]
G45	VSS
G47	DRAM0_DQ[26]
G49	DRAM0_DQ[30]
G5	VSS
G51	DRAM0_DQSN[3]
G53	VSS
G55	RESERVED
G57	RESERVED
G59	DRAM_VDD_S4
G7	ICLK_USB_TERMN
G9	PMC_CORE_PWROK
H10	VSS
H12	TAP_TRST#
H14	GPIO_S5[09]
H16	VSS
H18	VSS
H2	USB3DEV_RXP[0]
H20	PMC_PLTRST#
H22	VSS
H24	PMC_SUSPWRDNACK
H26	CORE_VCC_S0iX
H28	VSS
H32	DDI0_DDCDATA
H34	VSS
H36	VSS
H38	MCSI_GPIO[11]
H4	USB3_RXN[0]
H40	VSS
H42	DRAM0_DQ[00]
H44	VSS
H46	VSS

Ball #	Customer Name
H48	DRAM0_DQ[25]
H50	DRAM0_DQSP[3]
H52	DRAM0_DQ[24]
H54	RESERVED
H56	VSS
H58	DRAM0_CKE[0]
H6	ICLK_USB_TERMP
H8	USB_RCOMPO
J1	USB_V3P3_G3
J11	TAP_TDO
J13	VSS
J15	GPIO_S5[07]
J17	GPIO_S5[23]
J19	GPIO_S5[30]
J21	PMC_SLP_S0IX#
J23	GPIO_S5[17]
J25	CORE_VCC_S0iX
J27	PCU_SPI_CS[1]#
J3	USB3DEV_RXN[0]
J30	VSS
J33	DDI0_VDDEN
J35	DDI1_BKLTCTL
J37	MCSI_GPIO[08]
J39	MCSI_GPIO[00]
J41	VSS
J43	DRAM0_DQSP[0]
J45	DRAM0_DQ[06]
J47	DRAM0_DQ[02]
J49	DRAM0_DQ[28]
J5	RESERVED
J51	DRAM0_DM[3]
J53	DRAM0_DQ[31]
J55	RESERVED
J57	DRAM0_CS[0]#
J59	DRAM_VDD_S4
J7	USB_RCOMPI
J9	USB3_TXN[0]

Ball #	Customer Name
K10	VSS
K12	TAP_TMS
K14	GPIO_S5[01]
K16	GPIO_S5[28]
K18	GPIO_S5[24]
K2	USB_V3P3_G3
K20	PMC_SLP_S4#
K22	GPIO_S5[15]
K24	VSS
K26	CORE_VCC_S0iX
K28	PCU_SPI_MISO
K32	DDI0_HPD
K34	DDI1_VDDEN
K36	DDI1_BKLTEN
K38	MCSI_GPIO[10]
K4	RESERVED
K40	MCSI_GPIO[01]
K42	DRAM0_DQ[04]
K44	DRAM0_DQSN[0]
K46	DRAM0_DQ[05]
K48	VSS
K50	VSS
K52	DRAM0_DQ[29]
K54	VSS
K56	DRAM0_CKE[2]
K58	VSS
K6	VSS
K8	USB3_TXP[0]
L1	VSS
L11	VSS
L13	VSS
L15	VSS
L17	VSS
L19	VSS
L21	VSS
L23	VSS
L25	CORE_VCC_S0iX

Ball #	Customer Name
L27	CORE_VCC_S0iX
L3	ICLK_USB3DEV_TERM P
L30	CORE_VCC_S0iX
L33	VSS
L35	VSS
L37	VSS
L39	VSS
L41	VSS
L43	DRAM0_DQ[03]
L45	VSS
L47	DRAM0_DQ[27]
L49	RESERVED
L5	VSS
L51	DRAM0_CA[2]
L53	RESERVED
L55	DRAM0_CA[3]
L57	DRAM0_CA[7]
L59	DRAM_VDD_S4
L7	VSS
L9	USB3DEV_TXN[0]
M10	USB3_REXT[0]
M12	USB_VSSA
M14	USB_V1P0_S4
M16	VSS
M18	VSS
M2	ICLK_USB3DEV_TERM N
M20	PCU_V3P3_G3
M22	RTC_VCC
M24	VSS
M26	CORE_VCC_S0iX
M28	CORE_VCC_S0iX
M32	VSS
M34	PWR_RVD_V1P0_OBS
M36	SVID_V1P0_S4
M38	VSS
M4	ICLK_USB3_TERMP

M40 UNCORE_V1P24_SOIX_F3 M42 VSS M44 DRAM0_DM[0] M46 DRAM0_DQ[01] M48 RESERVED M50 DRAM0_CA[0] M52 VSS M54 RESERVED M56 VSS M5 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N51 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_S4 P21 UNCORE_V1P8_G3 P22 <th>Ball #</th> <th>Customer Name</th>	Ball #	Customer Name
M44 DRAMO_DM[0] M46 DRAMO_DQ[01] M48 RESERVED M50 DRAMO_CA[0] M52 VSS M54 RESERVED M56 VSS M58 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAM0_CKN[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27	M40	
M46 DRAMO_DQ[01] M48 RESERVED M50 DRAMO_CA[0] M52 VSS M54 RESERVED M56 VSS M58 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAMO_CA[1] N53 VSS N55 DRAMO_CKP[0] N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1PO_G3 P17 UNCORE_V1PO_G3 P19 UNCORE_V1PO_S4 P21 UNCORE_V1PS_G3 P23 PCU_V1PS_G3 P24 PMU_V1PS_G3 P25 VSS P27	M42	VSS
M48 RESERVED M50 DRAM0_CA[0] M52 VSS M54 RESERVED M56 VSS M58 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N51 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_G3 P25 VSS P27 PMU_V1P8_G3 P29	M44	DRAM0_DM[0]
M50 DRAMO_CA[0] M52 VSS M54 RESERVED M56 VSS M58 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAMO_CKP[0] N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1PO_G3 P17 UNCORE_V1PO_G3 P19 UNCORE_V1PO_G3 P2 USB_V1PO_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_G3 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_SOIX P32	M46	DRAM0_DQ[01]
M52 VSS M54 RESERVED M56 VSS M58 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	M48	RESERVED
M54 RESERVED M56 VSS M58 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	M50	DRAM0_CA[0]
M56 VSS M58 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	M52	VSS
M58 VSS M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	M54	RESERVED
M6 VSS M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	M56	VSS
M8 USB3DEV_TXP[0] N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	M58	VSS
N1 USB_V1P0_S4 N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	M6	VSS
N11 RESERVED N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAMO_CA[1] N53 VSS N55 DRAMO_CKP[0] N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1PO_G3 P17 UNCORE_V1PO_G3 P19 UNCORE_V1PO_G3 P2 USB_V1PO_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	M8	USB3DEV_TXP[0]
N3 ICLK_USB3_TERMN N49 VSS N5 USB_HSICO_DATA N51 DRAM0_CA[1] N53 VSS N55 DRAMO_CKP[0] N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N1	USB_V1P0_S4
N49 VSS N5 USB_HSICO_DATA N51 DRAMO_CA[1] N53 VSS N55 DRAMO_CKP[0] N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1PO_G3 P17 UNCORE_V1PO_G3 P19 UNCORE_V1PO_G3 P2 USB_V1PO_S4 P21 UNCORE_V1PS_G3 P23 PCU_V1PS_S4 P25 VSS P27 PMU_V1PS_G3 P29 CORE_VCC_SOIX P32 CORE_VCC_SOIX	N11	RESERVED
N5 USB_HSICO_DATA N51 DRAMO_CA[1] N53 VSS N55 DRAMO_CKP[0] N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1PO_G3 P17 UNCORE_V1PO_G3 P19 UNCORE_V1PO_G3 P2 USB_V1PO_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N3	ICLK_USB3_TERMN
N51 DRAMO_CA[1] N53 VSS N55 DRAMO_CKP[0] N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1PO_G3 P17 UNCORE_V1PO_G3 P19 UNCORE_V1PO_G3 P2 USB_V1PO_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N49	VSS
N53 VSS N55 DRAM0_CKP[0] N57 DRAM0_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N5	USB_HSIC0_DATA
N55 DRAMO_CKP[0] N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N51	DRAM0_CA[1]
N57 DRAMO_CKN[0] N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N53	VSS
N59 DRAM_VDD_S4 N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N55	DRAM0_CKP[0]
N7 VSS N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N57	DRAM0_CKN[0]
N9 USB3DEV_REXT[0] P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N59	DRAM_VDD_S4
P10 RESERVED P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N7	VSS
P12 VSS P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	N9	USB3DEV_REXT[0]
P15 UNCORE_V1P0_G3 P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	P10	RESERVED
P17 UNCORE_V1P0_G3 P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	P12	VSS
P19 UNCORE_V1P0_G3 P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	P15	UNCORE_V1P0_G3
P2 USB_V1P0_S4 P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	P17	UNCORE_V1P0_G3
P21 UNCORE_V1P8_G3 P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	P19	UNCORE_V1P0_G3
P23 PCU_V1P8_S4 P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	P2	USB_V1P0_S4
P25 VSS P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	P21	UNCORE_V1P8_G3
P27 PMU_V1P8_G3 P29 CORE_VCC_S0iX P32 CORE_VCC_S0iX	P23	PCU_V1P8_S4
P29	P25	VSS
P32 CORE_VCC_S0iX	P27	PMU_V1P8_G3
	P29	CORE_VCC_S0iX
P34 VSS	P32	CORE_VCC_S0iX
	P34	VSS

Ball #	Customer Name
P36	VSS
P38	VSS
P4	USB_HSIC1_DATA
P40	VSS
P42	MIPI_V1P8_S4
P44	UNCORE_V1P24_S0iX _F4
P46	VSS
P48	DRAM0_CA[8]
P50	DRAM0_CA[6]
P52	VSS
P54	DRAM0_CKP[2]
P56	DRAM0_CKN[2]
P58	VSS
P6	VSS
P8	VSS
R1	HSIC_V1P24_G3
R11	VSS
R3	USB_HSIC0_STROBE
R49	DRAM0_CA[4]
R5	VSS
R51	DRAM0_CA[5]
R53	RESERVED
R55	DRAM0_DQ[42]
R57	VSS
R59	VSS
R7	VSS
R9	VSS
T10	USB_ULPI_DIR
T12	USB_ULPI_STP
T14	USB_HSIC_RCOMP
T16	VSS
T18	UNCORE_V1P0_G3
T2	USB_ULPI_DATA[5]
T20	VSS
T22	VSS
T24	VSS
T26	VSS

Ball #	Customer Name
T28	VSS
T31	CORE_VCC_S0iX
T33	CORE_VCC_S0iX
T35	CORE_VCC_S0iX
T37	CORE_VCC_S0iX
T39	RESERVED
T4	USB_HSIC1_STROBE
T41	VSS
T43	VSS
T45	VSS
T48	DRAM0_DQ[33]
T50	DRAM0_DQ[32]
T52	DRAM0_CA[9]
T54	DRAM0_DQ[43]
T56	VSS
T58	DRAM0_DQ[47]
Т6	USB_ULPI_DATA[1]
Т8	USB_ULPI_DATA[3]
U1	VSS
U11	VSS
U3	USB_ULPI_DATA[6]
U49	VSS
U5	USB_ULPI_DATA[7]
U51	VSS
U53	VSS
U55	DRAM0_DQ[40]
U57	DRAM0_DQ[41]
U59	VSS
U7	VSS
U9	USB_ULPI_DATA[0]
V10	USB_ULPI_CLK
V12	MCSI2_CLKP
V15	VSS
V17	VSS
V19	VSS
V2	VSS
V21	UNCORE_VNN_S4

Ball #	Customer Name
V23	UNCORE_VNN_S4
V25	UNCORE_VNN_S4
V27	VSS
V29	CORE_VCC_S0iX
V32	CORE_VCC_S0iX
V34	VSS
V36	CORE_VCC_S0iX
V38	VSS
V4	MDSI_C_DN[3]
V40	RESERVED
V42	VSS
V44	VSS
V46	VSS
V48	DRAM0_DQ[36]
V50	DRAM0_DQ[35]
V52	VSS
V54	VSS
V56	DRAM0_DQSN[5]
V58	VSS
V6	VSS
V8	USB_ULPI_NXT
W1	USB3_V1P0_G3
W11	MCSI2_CLKN
W14	VSS
W16	VSS
W18	VSS
W20	UNCORE_VNN_S4
W22	UNCORE_VNN_S4
W24	UNCORE_VNN_S4
W26	VSS
W28	VSS
W3	MDSI_C_DP[2]
W31	CORE_VCC_S0iX
W33	VSS
W35	CORE_VCC_S0iX
W37	CORE_VCC_S0iX
W39	CORE_V1P05_S4

Ball #	Customer Name
W41	VSS
W43	VSS
W45	VSS
W49	VSS
W5	MDSI_C_DP[3]
W51	DRAM0_DQSP[4]
W53	VSS
W55	DRAM0_DQSP[5]
W57	DRAM0_DM[5]
W59	DRAM_VDD_S4
W7	USB_ULPI_DATA[4]
W9	USB_ULPI_DATA[2]
Y10	VSS
Y12	VSS
Y2	VSS
Y4	MDSI_C_DN[2]
Y48	DRAM0_DQ[39]
Y50	DRAM0_DQSN[4]
Y52	DRAM0_DM[4]
Y54	DRAM0_DQ[46]
Y56	VSS
Y58	DRAM0_DQ[44]
Y6	VSS
Y8	VSS

31.2 Type 3 SoC - Pin List Location

Ball #	Customer Name
D1	ILB_RTC_X1
E1	ILB_RTC_X2
D2	ILB_RTC_EXTPAD
T2	Reserved
F2	PMC_CORE_PWROK
F7	TAP_PRDY#
F5	TAP_PREQ#
AA4	DDI_RCOMP_N
AA3	DDI_RCOMP_P
AB3	DDI0_TXN[0]
AA1	DDI0_TXN[1]
Y1	DDI0_TXN[2]
Y3	DDI0_TXN[3]
AB4	DDI0_TXP[0]
AB2	DDI0_TXP[1]
Y2	DDI0_TXP[2]
Y4	DDI0_TXP[3]
W6	DDI1_AUXN
Y5	DDI1_AUXP
U6	DDI1_TXN[0]
V4	DDI1_TXN[1]
U1	DDI1_TXN[2]
U5	DDI1_TXN[3]
U7	DDI1_TXP[0]
V5	DDI1_TXP[1]
T1	DDI1_TXP[2]
U4	DDI1_TXP[3]
AE21	DRAM_RCOMP[0]
AE20	DRAM_RCOMP[1]
AC20	DRAM_VDD_S4_PWROK
M21	DRAM0_BS[0]
N19	DRAM0_BS[1]
K22	DRAM0_BS[2]
P20	DRAM0_CAS#
J23	DRAM0_CKP[0]

Ball #	Customer Name
K20	DRAM0_CKP[2]
J22	DRAM0_CKN[0]
K21	DRAM0_CKN[2]
G22	DRAM0_CKE[0]
G23	DRAM0_CKE[1]
F23	DRAM0_CKE[2]
F22	DRAM0_CKE[3]
P22	DRAM0_CS[0]#
P23	DRAM0_CS[2]#
A20	DRAM0_DM[0]
D21	DRAM0_DM[1]
D25	DRAM0_DM[2]
F19	DRAM0_DM[3]
AC24	DRAM0_DM[4]
V24	DRAM0_DM[5]
Y22	DRAM0_DM[6]
T23	DRAM0_DM[7]
D18	DRAM0_DQ[00]
B18	DRAM0_DQ[01]
E19	DRAM0_DQ[10]
E23	DRAM0_DQ[11]
D22	DRAM0_DQ[12]
E22	DRAM0_DQ[13]
E20	DRAM0_DQ[14]
D20	DRAM0_DQ[15]
E25	DRAM0_DQ[16]
A23	DRAM0_DQ[17]
C23	DRAM0_DQ[18]
F25	DRAM0_DQ[19]
A21	DRAM0_DQ[02]
B24	DRAM0_DQ[20]
D24	DRAM0_DQ[21]
B23	DRAM0_DQ[22]
F24	DRAM0_DQ[23]
F20	DRAM0_DQ[24]
F21	DRAM0_DQ[25]

Ball #	Customer Name
G20	DRAM0_DQ[26]
H23	DRAM0_DQ[27]
G21	DRAM0_DQ[28]
J21	DRAM0_DQ[29]
C18	DRAM0_DQ[03]
J20	DRAM0_DQ[30]
H22	DRAM0_DQ[31]
AD24	DRAM0_DQ[32]
AB25	DRAM0_DQ[33]
Y24	DRAM0_DQ[34]
AE23	DRAM0_DQ[35]
AA25	DRAM0_DQ[36]
AC23	DRAM0_DQ[37]
AD23	DRAM0_DQ[38]
Y25	DRAM0_DQ[39]
A22	DRAM0_DQ[04]
V23	DRAM0_DQ[40]
T24	DRAM0_DQ[41]
W22	DRAM0_DQ[42]
W23	DRAM0_DQ[43]
R23	DRAM0_DQ[44]
R22	DRAM0_DQ[45]
V22	DRAM0_DQ[46]
T25	DRAM0_DQ[47]
AB22	DRAM0_DQ[48]
AC22	DRAM0_DQ[49]
B20	DRAM0_DQ[05]
Y19	DRAM0_DQ[50]
AD22	DRAM0_DQ[51]
AA22	DRAM0_DQ[52]
Y23	DRAM0_DQ[53]
Y20	DRAM0_DQ[54]
Y21	DRAM0_DQ[55]
T22	DRAM0_DQ[56]
T20	DRAM0_DQ[57]
W20	DRAM0_DQ[58]
V20	DRAM0_DQ[59]

Ball #	Customer Name
A18	DRAM0_DQ[06]
U21	DRAM0_DQ[60]
W21	DRAM0_DQ[61]
U20	DRAM0_DQ[62]
T21	DRAM0_DQ[63]
B22	DRAM0_DQ[07]
C20	DRAM0_DQ[08]
D23	DRAM0_DQ[09]
D19	DRAM0_DQSP[0]
C22	DRAM0_DQSP[1]
C24	DRAM0_DQSP[2]
H20	DRAM0_DQSP[3]
AC25	DRAM0_DQSP[4]
V25	DRAM0_DQSP[5]
AB23	DRAM0_DQSP[6]
U22	DRAM0_DQSP[7]
C19	DRAM0_DQSN[0]
C21	DRAM0_DQSN[1]
C25	DRAM0_DQSN[2]
H19	DRAM0_DQSN[3]
AB24	DRAM0_DQSN[4]
U25	DRAM0_DQSN[5]
AA23	DRAM0_DQSN[6]
U23	DRAM0_DQSN[7]
U19	DRAM0_DRAMRST#
M24	DRAM0_MA[00]
L23	DRAM0_MA[01]
N20	DRAM0_MA[10]
K25	DRAM0_MA[11]
M25	DRAM0_MA[12]
M23	DRAM0_MA[13]
H25	DRAM0_MA[14]
K23	DRAM0_MA[15]
N23	DRAM0_MA[02]
M20	DRAM0_MA[03]
M22	DRAM0_MA[04]
L22	DRAM0_MA[05]

Ball #	Customer Name
K24	DRAMO_MA[06]
N25	DRAM0_MA[07]
J25	DRAMO_MA[08]
H24	DRAM0_MA[09]
P24	DRAM0_ODT[0]
P25	DRAM0_ODT[2]
N22	DRAM0_RAS#
P21	DRAM0_WE#
AA20	RESERVED
AA19	RESERVED
AB21	RESERVED
AC21	RESERVED
AE22	DRAM_RCOMP[2]
AB20	DRAM_CORE_PWROK
AD20	DRAM_VREF
AE1	RESERVED
AD1	RESERVED
W3	RESERVED
W4	RESERVED
Y18	RESERVED
D17	GPIO_S0_NC[15]
B16	GPIO_S0_NC[16]
C15	GPIO_S0_NC[17]
C14	GPIO_S0_NC[18]
C17	GPIO_S0_NC[19]
C16	GPIO_S0_NC[20]
D16	GPIO_S0_NC[21]
D15	GPIO_S0_NC[22]
D14	GPIO_S0_NC[23]
F18	GPIO_S0_NC[24]
E17	GPIO_S0_NC[25]
E16	GPIO_S0_NC[26]
F17	MDSI_A_TE
A6	GPIO_S5[22]
B4	GPIO_S5[23]
A3	GPIO_S5[24]
В3	GPIO_S5[25]

Ball #	Customer Name
B2	GPIO_S5[26]
C2	GPIO_S5[27]
C3	GPIO_S5[28]
C4	GPIO_S5[29]
A5	GPIO_S5[30]
A4	GPIO_RCOMP
E9	GPIO_S5[00]
D7	GPIO_S5[01]
F9	GPIO_S5[02]
E8	GPIO_S5[03]
F8	GPIO_S5[04]
D6	GPIO_S5[05]
D4	GPIO_S5[06]
D5	GPIO_S5[07]
AA14	I2S0_DATAOUT
Y10	I2S1_DATAIN
AB14	I2S1_DATAOUT
AE14	AUDIO_RCOMP
Y16	I2S0_CLK
AC13	I2S1_CLK
AC14	I2S1_L_R
Y13	I2S0_DATAIN
Y14	I2S0_L_R
N5	RESERVED
C13	DDI0_DDCCLK
D13	DDI0_DDCDATA
E14	DDI0_HPD
B12	DDI1_HPD
AB17	D1_I2C_CLK
AA17	D1_I2C_DATA
AD12	SIO_I2CO_CLK
AE12	SIO_I2CO_DATA
AD14	SIO_I2C1_CLK
AE13	SIO_I2C1_DATA
AC15	SIO_I2C2_CLK
AB15	SIO_I2C2_DATA
AC16	SIO_I2C3_CLK

Ball #	Customer Name
AB16	SIO_I2C3_DATA
AE16	SIO_I2C4_CLK
AD16	SIO_I2C4_DATA
V1	ICLK_ICOMP
M5	MCSI1_CLKN
M6	MCSI1_CLKP
P3	MCSI1_DN[0]
M1	MCSI1_DN[1]
M4	MCSI1_DN[2]
L3	MCSI1_DN[3]
P2	MCSI1_DP[0]
N1	MCSI1_DP[1]
M3	MCSI1_DP[2]
L4	MCSI1_DP[3]
K4	MCSI2_CLKN
K5	MCSI2_CLKP
K6	MCSI2_DN[0]
J6	MCSI2_DP[0]
K1	MCSI_RCOMP
P5	MDSI_A_CLKN
P4	MDSI_A_CLKP
T4	MDSI_A_DN[0]
R4	MDSI_A_DN[1]
T6	MDSI_A_DN[2]
P6	MDSI_A_DN[3]
T3	MDSI_A_DP[0]
R3	MDSI_A_DP[1]
T5	MDSI_A_DP[2]
N6	MDSI_A_DP[3]
P1	MDSI_RCOMP
AC6	GPIO_S0_SC[57]
AD6	GPIO_S0_SC[61]
AA9	MMC1_D[4]
AA8	MMC1_D[5]
Y8	MMC1_D[6]
Y7	MMC1_D[7]
AD8	MMC1_RST#

Ball #	Customer Name
V3	ICLK_OSCIN
V2	ICLK_OSCOUT
A13	DDI1_BKLTCTL
A14	DDI1_BKLTEN
B14	DDI1_VDDEN
AC5	GPIO_S0_SC[03]
AA5	GPIO_S0_SC[07]
AB5	PMC_PLT_CLK[0]
AE4	PMC_PLT_CLK[1]
AD4	PMC_PLT_CLK[3]
AD2	PMC_PLT_CLK[4]
B8	PMC_ACPRESENT
C9	PMC_BATLOW#
B6	PMC_PLTRST#
A10	PMC_PWRBTN#
C6	USB_ULPI_RST#
C7	PMC_SLP_S0IX#
C8	PMC_SLP_S3#
D8	PMC_SLP_S4#
A9	PMC_SUSCLK_0
B10	GPIO_S5[15]
D9	GPIO_S5[17]
F16	PROCHOT#
AA16	SIO_PWM[0]
Y17	SIO_PWM[1]
AE6	MMC1_RCOMP
F3	PMC_RSMRST#
E3	ILB_RTC_TEST#
AB6	GPIO_S0_SC[00]
AA6	GPIO_SO_SC[01]
Y6	GPIO_S0_SC[02]
AC4	RESERVED
AC3	RESERVED
AC1	RESERVED
AC2	RESERVED
AD3	RESERVED
AE3	RESERVED

Ball #	Customer Name
AE8	MMC1_CLK
AB8	MMC1_CMD
AB7	MMC1_D[0]
AC7	MMC1_D[1]
AC8	MMC1_D[2]
AB9	MMC1_D[3]
AE9	SD2_CLK
AC9	SD2_CMD
AB11	SD2_D[0]
AB10	SD2_D[1]
AC10	SD2_D[2]
AD10	SD2_D[3]_CD#
Y9	SD3_1P8EN
Y12	SD3_CD#
AC12	SD3_CLK
AB12	SD3_CMD
AC11	SD3_D[0]
AB13	SD3_D[1]
AA12	SD3_D[2]
AA13	SD3_D[3]
AA10	SD3_PWREN#
AE10	SD3_RCOMP
C5	GPIO_S5[10]
D3	GPIO_S5[08]
E6	GPIO_S5[09]
U3	RESERVED
F12	PCU_SPI_CLK
C12	PCU_SPI_CS[0]#
D12	PCU_SPI_CS[1]#
E13	PCU_SPI_MISO
E12	PCU_SPI_MOSI
AE5	GPIO_S0_SC[54]
E4	ILB_RTC_RST#
E10	PMC_SUS_STAT#
D10	PMC_SUSPWRDNACK
C10	SVID_ALERT#
D11	SVID_CLK

Ball #	Customer Name
C11	SVID_DATA
E5	TAP_TCK
F4	TAP_TDI
F6	TAP_TDO
P10	RESERVED
P11	RESERVED
H6	TAP_TMS
G6	TAP_TRST#
AB18	SIO_UART1_CTS#
AC18	SIO_UART1_RTS#
AB19	SIO_UART1_RXD
AC19	SIO_UART1_TXD
AE17	SIO_UART2_CTS#
AC17	SIO_UART2_RTS#
AD18	SIO_UART2_RXD
AE18	SIO_UART2_TXD
G3	USB_DN[0]
H3	USB_DN[1]
G4	USB_DP[0]
H4	USB_DP[1]
A2	RESERVED
F13	USB_OC[0]#
F14	USB_OC[1]#
F1	USB_RCOMPO
N3	USB_ULPI_CLK
J5	USB_ULPI_DATA[0]
H5	USB_ULPI_DATA[1]
J4	USB_ULPI_DATA[2]
H1	USB_ULPI_DATA[3]
H2	USB_ULPI_DATA[4]
J3	USB_ULPI_DATA[5]
J1	USB_ULPI_DATA[6]
K2	USB_ULPI_DATA[7]
K3	USB_ULPI_DIR
N4	USB_ULPI_NXT
F10	USB_ULPI_REFCLK
M2	USB_ULPI_STP

Ball #	Customer Name
A12	CORE_VCC_S0iX
A8	USB_REXT[1]
F15	CORE_VCC_S0iX
G15	CORE_VCC_S0iX
H14	CORE_VCC_S0iX
H15	CORE_VCC_S0iX
H16	CORE_VCC_S0iX
J17	CORE_VCC_S0iX
K13	CORE_VCC_S0iX
K14	CORE_VCC_S0iX
K15	CORE_VCC_S0iX
K16	CORE_VCC_S0iX
L14	CORE_VCC_S0iX
L15	CORE_VCC_S0iX
L16	CORE_VCC_S0iX
M14	CORE_VCC_S0iX
M15	CORE_VCC_S0iX
N14	CORE_VCC_S0iX
N15	CORE_VCC_S0iX
P13	CORE_VCC_S0iX
P14	CORE_VCC_S0iX
P15	CORE_VCC_S0iX
P16	CORE_VCC_S0iX
T19	DRAM_VDD_S4
P19	DRAM_V1P24_S0iX_F1
K18	DRAM_VDD_S4
L18	DRAM_VDD_S4
L19	DRAM_VDD_S4
L20	DRAM_VDD_S4
M19	DRAM_VDD_S4
W19	DRAM_VDD_S4
AE25	PWR_RSVD_OBS
M18	DRAM_V1P0_S4
N18	DRAM_V1P0_S4
AE24	DRAM_V1P0_S4
G19	DRAM_V1P0_S4
H18	DRAM_V1P0_S4

U18 DRAM_V1P0_S4 A25 PWR_RSVD_OBS T8 DDI_V1P0_S0iX U8 DDI_V1P0_S0iX T7 DDI_V1P0_S0iX J9 UNCORE_V1P0_G3 K9 UNCORE_V1P0_G3 V15 UNCORE_V1P0_S0iX V16 UNCORE_V1P0_S0iX W15 UNCORE_V1P0_S0iX H8 UNCORE_V1P0_S4 W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 G17 CORE_V1P05_S4
T8
U8 DDI_V1P0_S0iX T7 DDI_V1P0_S0iX J9 UNCORE_V1P0_G3 K9 UNCORE_V1P0_G3 V15 UNCORE_V1P0_S0iX V16 UNCORE_V1P0_S0iX W15 UNCORE_V1P0_S0iX W17 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
T7 DDI_V1P0_S0iX J9 UNCORE_V1P0_G3 K9 UNCORE_V1P0_G3 V15 UNCORE_V1P0_S0iX V16 UNCORE_V1P0_S0iX W15 UNCORE_V1P0_S0iX W15 UNCORE_V1P0_S0iX H8 UNCORE_V1P0_S4 W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
J9 UNCORE_V1P0_G3 K9 UNCORE_V1P0_G3 V15 UNCORE_V1P0_S0iX V16 UNCORE_V1P0_S0iX W15 UNCORE_V1P0_S0iX H8 UNCORE_V1P0_S4 W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
K9 UNCORE_V1P0_G3 V15 UNCORE_V1P0_S0iX V16 UNCORE_V1P0_S0iX W15 UNCORE_V1P0_S0iX H8 UNCORE_V1P0_S4 W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
V15 UNCORE_V1P0_S0iX V16 UNCORE_V1P0_S0iX W15 UNCORE_V1P0_S0iX H8 UNCORE_V1P0_S4 W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
V16 UNCORE_V1P0_S0iX W15 UNCORE_V1P0_S0iX H8 UNCORE_V1P0_S4 W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
W15 UNCORE_V1P0_S0iX H8 UNCORE_V1P0_S4 W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
H8 UNCORE_V1P0_S4 W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
W7 VSS V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
V7 VSS V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
V8 VSS W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
W8 VSS A16 CORE_V1P05_S4 A17 CORE_V1P05_S4
A16
A17 CORE_V1P05_S4
G17 CORE_V1P05_S4
G18 CORE_V1P05_S4
K17 CORE_V1P05_S4
L17 CORE_V1P05_S4
R17 CORE_V1P05_S4
R18 CORE_V1P05_S4
B25 PWR_RSVD_OBS
R10 UNCORE_V1P0_S0iX
R11 UNCORE_V1P0_S0iX
T10 UNCORE_V1P0_S0iX
H11 UNCORE_V1P0_S0iX
H12 UNCORE_V1P0_S0iX
H7 USB_V1P0_S4
C1 USB_REXT[0]
G8 USB_V1P0_S4
W10 GPIO_V1P0_S4
J7 UNCORE_V1P0_G3
K7 UNCORE_V1P0_G3
K8 UNCORE_V1P0_G3
L7 UNCORE_V1P0_G3

Ball #	Customer Name
M16	CORE_V1P05_S4
J16	CORE_V1P05_S4
W12	UNCORE_V1P8_S4
W13	UNCORE_V1P8_S4
W16	UNCORE_V1P8_S4
Y15	UNCORE_V1P8_S4
G11	UNCORE_V1P8_G3
H9	USB_V3P3_S0iX
J15	MIPI_V1P8_S4
G12	PCU_V3P3_G3
W14	SD3_V1P8V3P3_S4
N7	MIPI_V1P24_S4
P7	MIPI_V1P24_S4
F11	RTC_VCC
H10	PMC_V1P8_G3
J10	PMC_V1P8_G3
K10	PMC_V1P8_G3
N8	ICLK_V1P24_S4_F2
P12	UNCORE_V1P24_S0iX_F5
G13	UNCORE_V1P24_S0iX_F4
H13	UNCORE_V1P24_S0iX_F4
P9	UNCORE_V1P24_S0iX_F1
M7	ICLK_V1P24_S4_F1
AB1	UNCORE_VNN_S4
K12	UNCORE_VNN_S4
L11	UNCORE_VNN_S4
L12	UNCORE_VNN_S4
L13	UNCORE_VNN_S4
L9	UNCORE_VNN_S4
M10	UNCORE_VNN_S4
M11	UNCORE_VNN_S4
M12	UNCORE_VNN_S4
M8	UNCORE_VNN_S4
M9	UNCORE_VNN_S4
N10	UNCORE_VNN_S4
N11	UNCORE_VNN_S4
N12	UNCORE_VNN_S4

Ball #	Customer Name
R13	UNCORE_VNN_S4
R8	UNCORE_VNN_S4
T11	UNCORE_VNN_S4
T12	UNCORE_VNN_S4
T13	UNCORE_VNN_S4
T14	UNCORE_VNN_S4
T15	UNCORE_VNN_S4
T16	UNCORE_VNN_S4
T17	UNCORE_VNN_S4
U10	UNCORE_VNN_S4
U11	UNCORE_VNN_S4
U12	UNCORE_VNN_S4
U13	UNCORE_VNN_S4
U14	UNCORE_VNN_S4
U15	UNCORE_VNN_S4
U16	UNCORE_VNN_S4
U17	GPIO_S0_SC[65]
V10	UNCORE_VNN_S4
V11	UNCORE_VNN_S4
V13	UNCORE_VNN_S4
V17	UNCORE_VNN_S4
V18	UNCORE_VNN_S4
W18	UNCORE_VNN_S4
A24	VSS
AA11	VSS
AA15	VSS
AA18	VSS
AA2	VSS
AA21	VSS
AA24	VSS
AA7	VSS
AD13	VSS
AD17	VSS
AD21	VSS
AD25	VSS
AD5	VSS
AD9	VSS

Ball #	Customer Name
AE2	VSS
B1	VSS
B13	VSS
B17	VSS
B21	VSS
B5	VSS
В9	VSS
E11	VSS
E15	VSS
E18	VSS
E2	VSS
E21	VSS
E24	VSS
E7	VSS
G10	VSS
G14	VSS
G16	VSS
G5	VSS
G9	VSS
H17	VSS
H21	VSS
J11	VSS
J12	VSS
J13	VSS
J14	VSS
J18	VSS
J19	VSS
J2	VSS
J24	VSS
Ј8	VSS
K11	VSS
K19	VSS
L10	VSS
L21	VSS
L5	VSS
L6	VSS
L8	VSS

Ball #	Customer Name
M13	VSS
M17	VSS
N13	VSS
N16	VSS
N17	VSS
N2	VSS
N21	VSS
N24	VSS
N9	VSS
P17	VSS
P18	VSS
P8	VSS
R12	VSS
R14	VSS
R15	VSS
R16	VSS
R19	VSS
R20	VSS
R21	VSS
R5	VSS
R6	VSS
R7	VSS
R9	VSS
T18	VSS
Т9	VSS
U2	VSS
U24	VSS
U9	VSS
V12	VSS
V14	VSS
V19	VSS
V21	VSS
V6	VSS
V9	VSS
W11	VSS
W17	VSS
W5	VSS

Ball #	Customer Name
W9	VSS
Y11	VSS
G7	USB_VSSA

§