
White Paper
Server Platform Group
May 2008, Intel Corporation

Intel® QuickData Technology
Software Guide for Linux*

2

White Paper Intel® QuickData Technology Software Guide for Linux*

Overview
This document describes the Intel® QuickData Technology
and contains instructions on how to configure the Intel
QuickData Technology for Linux* operating system.

Contents
1. Overview 2

2. Intel® QuickData Technology 2

 2.1 Faster, Scalable, More Reliable I/O 2

3. Supported Platforms 2

4. Requirements to Enable

Intel QuickData Technology 2

 4.1 How to Enable Intel

QuickData Technology? 3

5. Intel QuickData Technology Module Overview 3

6. Intel QuickData Technology Client Interfaces 3

 6.1 Client Registration/Un-registration 3

6.2 Initiating DMA Channel

memcpy Operations 4

6.3 Client Data Structures 6

7. Intel QuickData Technology sysfs Interface 7

8. Support 7

9. References 7

2. Intel® QuickData Technology
Intel QuickData Technology is a platform solution designed to

maximize the throughput of server data traffic across a broader

range of configurations and server environments to achieve faster,

scalable, and more reliable I/O.

2.1 Faster, Scalable, More Reliable I/O
Intel QuickData Technology is a component of Intel® I/O Accelera-

tion Technology (Intel® I/OAT). It provides fast, scalable, and reliable

throughput by moving data more efficiently through the server. By

enabling broader use of the acceleration engine, Intel is improving

the cost/performance of Intel® Xeon® 5000 series processor-based

server platforms.

Intel has extended the value of Intel QuickData Technology by

enabling networking solutions providers to utilize Intel QuickData

Technology, the data movement acceleration engine present in

Intel Xeon processor-based server platforms.

3. Supported Platforms
Intel QuickData Technology is supported on the following chipsets:

• Intel® 5000 Series Chipset

• Intel® 5100 Chipset

• Intel® 7300 Chipset

• Intel® 5400 Chipset

4. Requirements to Enable Intel
QuickData Technology
This section describes the basic platform requirement to

enable Intel QuickData Technology for Linux operating system.

1. Platform BIOS shall support Intel QuickData Technology.

2. Linux kernel 2.6.18 or above is required.

3. Make sure that kernel is build with Intel I/OAT DMA support.

Kernel can be configured to build the IOATDMA as a module

or as in-built driver.

4. To set TCP stack as Intel I/OAT DMA client, TCP receive copy

offload should be enabled in kernel configuration.

3

White Paper Intel® QuickData Technology Software Guide for Linux*

4.1 How to Enable Intel QuickData Technology?

The Intel QuickData Technology can be enabled by loading the

Intel I/OAT DMA engine driver/modules (ioatdma.ko) at runtime.

To enable Intel QuickData Technology, load the ioatdma driver

module by typing following at the prompt.

modprobe ioatdma

Removing the ioatdma module once it has been loaded is not

recommended since TCP receives a hold reference to the ioatdma

driver when offloading traffic. However, if the “Forced module

unloading” option is enabled in the kernel, the module may be

unloaded with:

rmmod -f ioatdma

WARNING: The command above may hang the system.

5. Intel QuickData Technology Module Overview
This section highlights the Linux Intel QuickData Technology

module (ioatdma.ko) implementation details.

2. DMA System

The DMA subsystem abstracts the hardware-specific details from

Intel QuickData Technology clients, and provides a registration inter-

face. It manages all the underlying protocol to handle DMA channels.

3. Client

DMA clients register with the DMA subsystem before the DMA

driver has been loaded.

6. Intel QuickData Technology Client Interfaces
This section defines the interfaces and data structures used by

Intel QuickData Technology clients.

6.1 Client Registration/Un-registration

dma_async_client_register

This function registers Intel QuickData Technology client’s function

callback with the IOATDMA module.

void

dma_async_client_register(struct dma_client *client)

Linux Intel QuickData Technology Module (IOATDMA)

DMA System

DMA Driver

Client Client

Parameter Description

client The pointer to a dma_client structure with event
callback pointer and capability mask.

Return Values:

• None

dma_async_client_chan_request

This function is used by Intel QuickData Technology clients to

request one or more DMA channels.

void

dma_async_client_chan_request(struct dma_client *client)1. DMA Driver

The DMA driver handles the hardware-specific details of performing

DMA transactions. The DMA driver hides all the minute hardware

details from upper layers, and handles the detection of Intel

QuickData Technology, enumeration of resources, and handling

of interrupts and power management events.

Parameter Description

client Intel QuickData Technology client identifier, passed to
dma_async_client_register() (see above).

Return Values:

• None

4

dma_async_client_unregister

This function is used by Intel QuickData Technology client

to unregister and to free all the resources in use.

void

dma_async_client_unregister(struct dma_client *client)

Parameter Description

client The pointer to a struct dma_client, passed to dma_
async_client_register.

Return Values:

• None

6.2 Initiating DMA Channel memcpy Operations

Once the client has been given a DMA channel, it may use the

following functions to perform accelerated memory copy operations.

dma_async_memcpy_buf_to_buf

This function initiates a buffer to buffer memory copy.

dma_cookie_t

dma_async_memcpy_buf_to_buf(struct dma_chan *chan,

 void *dest, void *src, size_t len)

Parameter Description

chan An allocated dma channel pointer.

dest The destination address for the operation. This is a kernel
virtual address. If the operation is to user memory, the
caller must pin the memory, and pass a kernel pointer.

src The source address for the operation. This is a kernel
virtual address. If the operation is from user memory, the
caller must pin the memory, and pass a kernel pointer.

len The length of the memcpy.

Parameter Description

chan An allocated dma channel pointer.

page The destination page for the operation. This is a kernel
virtual address. If the operation is to user memory, the
caller must pin the memory, and pass a kernel pointer.

offset Offset into the page where to put the data.

kdata The source address for the operation. This is a kernel
virtual address.

len The length of the memcpy.

Return Values:

• If negative, the return is a standard Linux kernel error code.

• If non-negative, the return is a “cookie”. Since memory copies

happen asynchronously, the caller can use this function to verify

when a transaction, and all transactions that preceded it, is

complete. See dma_ async_memcpy_complete.

White Paper Intel® QuickData Technology Software Guide for Linux*

Return Values:

• If negative, the return is a standard Linux kernel error code.

• If non-negative, the return is a “cookie”. Since memory copies

happen asynchronously, the caller can use this function to verify

when a transaction, and all transactions that preceded it, is

complete. See dma_ async_memcpy_complete.

dma_async_memcpy_buf_to_pg

This function initiates a buffer to page memory copy.

dma_cookie_t

dma_async_memcpy_buf_to_pg(struct dma_chan *chan,

 struct page *page, unsigned int offset, void *kdata,

size_t len)

5

Parameter Description

chan An allocated dma channel pointer.

dest_
pg

The destination page for the operation, must be
mappable according to DMA mapping API rules for
streaming mappings.

dest_
off

Offset into the page where to put the data.

src_pg The source page for the operation, must be map-
pable according to DMA mapping API rules for
streaming mappings.

src_off Offset into the page where to find the data.

len The length of the memcpy.

Return Values:

• If negative, the return is a standard Linux kernel error code.

• If non-negative, the return is a “cookie”. Since memory copies

happen asynchronously, the caller can use this function to verify

when a transaction, and all transactions that preceded it, is

complete. See dma_memcpy_complete.

dma_async_memcpy_issue_pending

This function flushes any pending copy requests to the hardware

copy device. This allows drivers to push copies to hardware in

batches, reducing MMIO writes where possible.

void dma_async_memcpy_issue_pending(struct dma_chan

*chan)

Parameter Description

chan An allocated dma channel pointer.

dma_async_is_complete

This function tests a DMA request for completion.

enum dma_status

dma_async_is_complete(dma_cookie_t cookie,

 dma_cookie_t last_complete, dma_cookie_t last_used)

White Paper Intel® QuickData Technology Software Guide for Linux*

dma_async_memcpy_pg_to_pg

This function initiates a page to page memory copy.

dma_cookie_t

dma_async_memcpy_pg_to_pg(struct dma_chan *chan,

 struct page *dest_pg, unsigned int dest_off,

struct page *src_pg, unsigned int src_off, size_t len)

Parameter Description

cookie This value is returned by dma_ async_memcpy, and
is used as an identifier by the DMA subsystem, so it
can determine which DMA transaction the client is
waiting on.

last Returns last completed cookie, can be NULL.

used Returns last issued cookie, can be NULL.

Return Values:

• DMA_SUCCESS – the DMA transaction associated with the

given cookie is complete.

• DMA_IN_PROGRESS – the DMA transaction is not complete.

• DMA_ERROR – the DMA transaction failed for some reason.

All in-flight transactions should be resubmitted.

dma_async_memcpy_complete

This function is used to determine if a submitted DMA request has

been completed yet by the DMA engine. Typical operation would

be to submit a series of memory copy operations, and then poll this

function with the last cookie value returned, in order to know when

it is safe to proceed.

enum dma_status_t

dma_memcpy_complete(struct dma_chan *chan, dma_

cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)

Parameter Description

chan An allocated dma channel pointer.

cookie This value is returned by dma_ async_memcpy, and is
used as an identifier by the DMA subsystem, so it can
determine which DMA transaction the client is waiting on.

last Returns last completed cookie, can be NULL.

used Returns last issued cookie, can be NULL.

Return Values:

• DMA_SUCCESS – the DMA transaction associated with the

given cookie is complete.

• DMA_IN_PROGRESS – the DMA transaction is not complete.

• DMA_ERROR – the DMA transaction failed for some reason.

All in-flight transactions should be resubmitted.

6

Parameter Description

chan An allocated dma channel pointer.

cookie This value is returned by dma_ async_memcpy, and is
used as an identifier by the DMA subsystem, so it can
determine which DMA transaction the client is waiting on.

Return Values:

• DMA_SUCCESS – the DMA transaction associated with the

given cookie is complete.

• DMA_IN_PROGRESS – the DMA transaction is not complete.

• DMA_ERROR – the DMA transaction failed for some reason.

All in-flight transactions should be resubmitted.

6.3 Client Data Structures

Client code receives pointers to dma_client and dma_chan

structures. However, client code should never need to examine

or change the members of these structures. The information

described below is only used by IOATDMA module.

struct dma_client

This structure is used by the DMA subsystem to keep track

of DMA resources allocated to the client.

struct dma_client {

 dma_event_callback event_callback;

dma_cap_mask_t cap_mask;

struct list_head global_node;

};

Field Description

event_callback This is a pointer to the client’s event callback,
which the client passed to the DMA subsystem
in dma_async_client_register.

cap_mask This is DMA client capabilities mask.

global_node This is used by the DMA subsystem to keep
a list of all registered clients.

struct dma_chan

This structure represents a DMA channel. It is used by the DMA

subsystem to keep track of which device supplied the channel, as

well as what client it is allocated to, if any. It also keeps track of

some per-channel statistics, and data members needed for the

sysfs interface.

struct dma_chan

{

 struct dma_device *device;

dma_cookie_t cookie;

 /* sysfs */

int chan_id;

struct class_device class_dev;

 struct kref refcount;

int slow_ref;

struct rcu_head rcu;

 struct list_head device_node;

struct dma_chan_percpu *local;

};

Field Description

device Initialized by the driver, this is a pointer to
the device this channel resides on.

cookie Last cookie value returned to client.

chan_id Each channel is given a number by the DMA
subsystem, so they can be differentiated
in sysfs.

class_dev Required for sysfs usage.

refcount kref, used in “bigref” slow-mode.

slow_ref Indicates that the DMA channel is free.

rcu The DMA channel’s RCU head.

device_node Initialized by the driver, this is used to link all
channels a device has together. See struct
dma_device.channels.

local per-cpu pointer to a struct dma_chan_percpu.

White Paper Intel® QuickData Technology Software Guide for Linux*

dma_sync_wait

This function waits until a specified DMA memory copy completes.

enum dma_status

dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)

7. Intel QuickData Technology sysfs Interface
When the Intel QuickData Technology driver is properly loaded,

there will be directories created in sysfs, under /sys/class/dma,

named dma0chanX, where X is 0-3.

Channel Entries:

• in_use

1 If the DMA channel is allocated to a client, such as the

network stack:

• bytes_transferred

The total number of bytes transferred by the DMA engine:

• memcpy_count

The total number of copy operations initiated.

www.intel.com

8. Support
For general information, go to the Intel support Web site at:

http://support.intel.com

If an issue is identified with the released source code on the

supported kernel with a supported adapter, e-mail the specific

information related to the issue to linux.nics@intel.com.

9. References

www.intel.com/platforms/technologies/quickdata.htm

www.intel.com/technology/ioacceleration/index.htm

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not
intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this information.

This specification, as well as the software described in it, is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this
document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/
products/processor_number for details.

The Intel processor/chipset families may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Copies of documents, which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s Web Site.

Copyright © 2008 Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel. Leap ahead. logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others. Printed in the United States. 0608/DU/HBD/PDF 320045-001US

